Курс математики для технических высших учебных заведений. Часть 3. Дифференциальные уравнения. Уравнения математической физики. Теория оптимизации: Учебное пособие [Н. А. Берков] (pdf) читать онлайн

Книга в формате pdf! Изображения и текст могут не отображаться!


 [Настройки текста]  [Cбросить фильтры]

Лауреат второго Всероссийского конкурса НМС по математике
Министерства образования и науки РФ «Лучшее учебное издание по математике
в номинации «Математика в технических вузах»

Н. А. БЕРКОВ, В. Г. ЗУБКОВ,
В. Б. МИНОСЦЕВ, Е. А. ПУШКАРЬ

КУРС МАТЕМАТИКИ
ДЛЯ ТЕХНИЧЕСКИХ
ВЫСШИХ УЧЕБНЫХ
ЗАВЕДЕНИЙ
Часть 3
Дифференциальные уравнения.
Уравнения математической физики.
Теория оптимизации
Под редакцией
В. Б. Миносцева, Е. А. Пушкаря
Издание второе, исправленное

ДОПУЩЕНО
НМС по математике Министерства образования и науки РФ
в качестве учебного пособия для студентов вузов, обучающихся
по инженерно&техническим специальностям

•САНКТ/ПЕТЕРБУРГ•МОСКВА•КРАСНОДАР•
•2013•

ББК 22.1я73
К 93
Берков Н. А., Зубков В. Г., Миносцев В. Б.,
Пушкарь Е. А.
К 93
Курс математики для технических высших учебных
заведений. Часть 3. Дифференциальные уравнения.
Уравнения математической физики. Теория оптимизации:
Учебное пособие / Под ред. В. Б. Миносцева,
Е. А. Пушкаря. — 2+е изд., испр. — СПб.: Издательство
«Лань», 2013. — 528 с.: ил. — (Учебники для вузов.
Специальная литература).
ISBN 9785811415601
Учебное пособие соответствует Государственному образовательному
стандарту. Пособие включает в себя лекции и практические занятия.
Третья часть пособия содержит 25 лекций и 25 практических занятий по
следующим разделам: «Обыкновенные дифференциальные уравнения»,
«Дифференциальные уравнения в частных производных», «Элементы
вариационного исчисления и теории оптимизации».
Пособие предназначено для студентов технических, физико+
математических и экономических направлений.

ББК 22.1я73

Рецензенты:
À. Â. ÑÅÒÓÕÀ — äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîð,
÷ëåí ÍÌÑ ïî ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è íàóêè ÐÔ;
À. À. ÏÓÍÒÓÑ — ïðîôåññîð ôàêóëüòåòà ïðèêëàäíîé ìàòåìàòèêè
è ôèçèêè ÌÀÈ, ÷ëåí ÍÌÑ ïî ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ
è íàóêè ÐÔ; À. Â. ÍÀÓÌΠ— äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê,
äîöåíò êàôåäðû òåîðèè âåðîÿòíîñòåé ÌÀÈ; À. Á. ÁÓÄÀÊ — äîöåíò,
çàì. ïðåäñåäàòåëÿ îòäåëåíèÿ ó÷åáíèêîâ è ó÷åáíûõ ïîñîáèé ÍÌÑ
ïî ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è íàóêè ÐÔ;
Ó. Ã. ÏÈÐÓÌΠ— ïðîôåññîð, çàâ. êàôåäðîé âû÷èñëèòåëüíîé
ìàòåìàòèêè è ïðîãðàììèðîâàíèÿ ÌÀÈ (Òåõíè÷åñêèé óíèâåðñèòåò),
÷ëåí-êîððåñïîíäåíò ÐÀÍ, çàñëóæåííûé äåÿòåëü íàóêè ÐÔ.
Обложка
Е. А. ВЛАСОВА
Охраняется законом РФ об авторском праве.
Воспроизведение всей книги или любой ее части запрещается без письменного
разрешения издателя.
Любые попытки нарушения закона
будут преследоваться в судебном порядке.

© Издательство «Лань», 2013
© Коллектив авторов, 2013
© Издательство «Лань»,
художественное оформление, 2013


 
      

    
 ! 

"# $"  
   ! 
%&
 ' (   !  "! 
&&
"# $" ' (   !
 "! 
)
 * + 
  "! 
%
"# $" * +   "!  ,,
 % + 
  "! 
'
"# $" % +
   "! 

 & - +  
"! 
'
"# $" & -
+   "! 
'
 )   
./ 
'')
"# $" ) +   ./  '*,
¿

 

        
     
      ! "   
 $ %  &' & 
( &)  " 
      *&   '
     $ *&   '
- .   
  0  1 & 2
   !  '1  (  &  
  '  " ( 
      3  1
& 2    !  '1 
(  &     '  " ( 
  3   ( &) 
" 
      3  
( &)  " 
4&
 '  !
5(   


#
#
+,
/
/+

,$
,,
#
#,
#$

 

 

            
              
           

             
      !!     " #  
    !   " $         
  "         % & 
      '      "   
 $%(% )   *+, -        
 % '  '       " *+,    
.            
         % /          
   01 !         
          01
!   % $    2344  5    
              %
               
     )          "  
  )56# 2342 % $          
                
7        
    
            
 
           -  
% 8           
   !!             
  !!       !!     
        
   !!  
             
     *49 23,%       
       !        *9
2:,%              
           *;, *2;,%
! ;            9!! 5   
9!9! B         :!9! 5 
   
        !
 



  

C    && '(  D  
 
   ! )    
   (     '   '  
        
 !

              



          
            
        !         "
   #  !         "
$           !    
!   $   !      ! "
 
         $   $ "
$  !        
   "
 !  !   $   !    !
% !            $ 
           &   "
 '  (  )      
  *           "
      )& '    
    * $     !      "
        
         !    $"
         !  #    
    $      !  !     !
              
+      n    !   6n 
   n    , 12n
-$  $  !         "
               
,     
      ! "
   +  
           "
        ++    + 
#       !   !      "
     ++     . ++ "
     $  !       
 !    !      
/   $     !      $ 
        ++     "
               "
                "
    







   

     
         
                
                  
     ! "            
                   
    ! "           
      
!
#
$           
  $  
     
  $     
   
              % &  
 $     '        (   !
   

  

 )*!+ 
    
          x   
y    
  y  , y , . . . y(n) 
F (x, y, y  , y  , . . . , y (n) ) = 0.

,)*!+    

.  $   
,)*!+-  
           y!
/  
 sin x − y + 2y  = 0 x2y = 2 ln x + xy  
(        
 !
 )*!0   
      

          !     ! 
" !     #
/  y  − 2xy2 + 3x3 = 0
y  + 2y  + y = ex 1 




 )*!2 $
 

 &  
   

1 &  
  $ 
 !

          
F (x, y, y ) = 0.

   %
y  = f (x, y).

 

,)*!0  y  $   
,)*!2-

%   &'(#)*           
+      #

              



 
         
            
      
         
               
 ! "          
          
 #$ " #        
          

 %&'  y = ϕ(x)       

           y  ϕ(x)
 ϕ (x), . . . y(n)  ϕ(n)(x)          !
  
" # $  y = ϕ(x)     $  $
      
%    &      Φ(x, y) = 0    !
         
y  (x)

(              !
$         ) 
  *        # 
y  = f (x)          x  f (x) 
    (a, b)             
   $# "        

x

y(x) =

f (ξ)dξ,
x0

 x0, x ∈ (a, b)    $          
   ) $  
x

y(x) =

f (ξ)dξ + C,
x0

              #   
 # #        OY 
)               
 y  = f (x, y)       x   y     







   

      
       
             
           !   
      "" #
   $  
          %    &  
       !'!   !(   
"       x0, y0 $     
        x0 , y0$ )   
  

*      
y = ϕ(x, C1, C2 , . . . , Cn ) 
 +,- 

        
  G
      
 
 C1 , C2 , . . . , Cn
            

        y = ϕ(x, C1 , C2 , . . . , Cn ) 
!   
 C1 , . . . , Cn "



+,+ #   Φ(x, y, C1, . . . , Cn) = 0  
    
   ! 

 C1 , . . . , Cn        
     
  G"

 +,.

$     
  
      ! 
  
    
    
" %    
         "


*           '     
!'     
 
  
   
     "!     
" # y = y(x)             
   / %   
   !   
      &( y(x0 ) = y0  y  (x0 ) = y0   0
   
  "      
      t
 +,1 %  
  

y = ϕ(x)  
   
y  = f (x, y)  
!     y(x0 ) = y0   & ' "

              



            
         t = t0  m0
          
 
           
   ! m   " #  $ c (c > 0) % #
! &  !  & $      $ 

dm
= −cm
dt
   $  m|t=t0 = m0 
     $ 
m = m0 · e−c(t−t0) .

 '              
!     ""      
        #       " 
 $ % &    '    $ &       
   
      (    $  ! $ &
   )"  ( $  &   #    $
  *  $"+ ,    -  $ !   $,  $ 
&  $   .  $" $  & ,  $  
  ! *   & $ $ $" # # / $
$  !    $      $ !*    $ 
$  !     $ $ 
dv
m = −kv,
dt
# m 0    * v 0    * t 0 $!*  k > 0 0    
   $ ! 1   $ $  *      
 $ ! $   $        )   $ 
 $  v|t=t0 = v0  /   v0 = 1, 5 2
3$  $  !  
  ,   $  
 ! $ &+    $    "  &
&  !       *      $   $
 k/m = c 4#    $ 

v = v0 · e−k(t−t0 )/m .



 



       

 

  mk     −1 
   mk = 14 ln 32  −1         
          v|t=4  = 1 
!  "     #        
      $       
%      
   
        #      # 
         &   
 
   
    
     

      
 
       


'"       
            
% &      $ (&     
         )     
 *         
  
    +        )
        #    
  $(    #     
             *   
     $  ,    $ #
 #   "  #        
        &     
         #      
      
 
 

            

-            
 # &           
y.

y = f (x, y),
)/0 1*
      2   
 f (x, y)# 2 
      G   (x, y)
 #           
     )/0 1*
3     
)/0 1*   x y 
        % y = ϕ(x) 2  

              




      y = ϕ(x)  
    
ϕ  (x) ≡ f (x, ϕ(x)).



!!  "   y = ϕ(x) #$ % 
M(x, y)  !  &  $ % '# "!"
!( #&   
ϕ  (x) = tg α,



" α ) "  $&   * '# +&

 
  !  tg α = f (x, ϕ(x)) = f (x, y) "
(x, y) ) (  M ,! *#! "& 
$&  " + 
  & " 
 #%  &  &  $"  " 
  $ $ 
 #.  %*&  (x, y) * G # ""  $&  " + 
 /! #    tg α = f (x, y)



0
 G 
    
            G
            ! "
            
"
      f (x, y)  !  #
y  = f (x, y)

1 !  "!& !( $" 
 2 # $(/   *$+"   !(  !  " #* 
& ,  $   " + !
     #  &   # / + " $" 

"! ! ! $  &  % y = ϕ(x)
  &  ! $ % # % !
    !  &    & #" !

2! " "" +  y  = sin(x2 + y 2 )
   3
4 "!&  #  &  #  $
(! %  % "
3 %(  $(  OY 5

              


f (x, y) =

   






   





M(x, y)
,
N (x, y)

dy
M(x, y)
=
dx
N (x, y)



dx
N (x, y)
=
·
dy
M(x, y)





      



       

 
       # $ % M(x, y) 

M(x, y)dx − N (x, y)dy = 0.

!  " 
 # & 

N (x, y)

M 2 + N 2 = 0.

 '  



   

y
dy
=
dx
x

 



 (

          

) *
 + ,    (   -  
# $        ./    " 
  
 (
y

x

 





 

 

  
  



 



       

   
      
      k   y = kx, x > 0 y = kx, x < 0
  
   !"#$ % &'     
  (    )      * 
  '
      +   &' (
 (       +     
    (    '   O (0, 0)
   !""$     
 !,   
   

dy
x
=−
dx
y

 !"-$

          

.    / 0    !"-$ 1   (  
     2   3   (
+     - 4      (x, y) 
y

x

 





 

 


 !"#$  !"-$           
+  x2 + y2 = R2  )        
&'
 

 !"-$ .
3&  
√ 

   y = + R2 − x2 y = − R2 − x2 −R < x < R$
&        +  
 (
+ (  
5       1       
y = kx, x > 0 y = kx, x < 0        
y
dy
=     OX   ax + by = 0   
 !"#$ dx
x
    3&    (  XOY    

              
  

x

    y = −
y

        

   y > 0 y = + R2 − x2

 
  
x2 + y 2 = R2 !    

 






y < 0 y = − R 2 − x2 



" #            
  (x, y)    $
$%&#  

'(    &  
    



      
 
       
      


      
 
   !
)   $       
'(   
   (   "
(    $ 
 '  '    $       
 
$   tg α = k ' k *   +   '   
tg α = y  = f (x, y)       $   
&   &
f (x, y) = k.
 ,
- .   ,     $   // 0 
( '     , +  k  
 ,   
 ( $   $    1          (
      $

   2

 

"              

  y  = x2 + y 2 !

 #

3.
 )   $ 1 '  // 0 ( '  
  
 x2 +y 2√= k  $    0   
    k  0 
     ,
  $         $ %
  ' α  '   ' 
$&#   (& OX 
 k +  k = 1 $          (
x2 + y 2 = 1  k = 4 *   ( x2 + y 2 = 22   4 
k = 9 *   ( x2 + y 2 = 32   
 5  $ 
   &     $ %$&#   (& OX '
α1 = arctg 1 = π/4, α2 = arctg 4 α3 = arctg 9 6 k = 0 
 x2 + y 2 = 0 5    &        

 
   




&   "




  
 

  

  

         
      

    " ##$ % "

  

  


       

   

tg α = 0  
!





 % " % '  '  % (

% '  

(x0 , y0 ) )



  !       % 

 

 

         

 '

   *

 " %     + ,   

+ ,   

 


(x0 , y0 )

  " %  

(0, 0) (−1, 1)



(1, −1)

y

x

  

 

2

x +y

2

)! 

"

%

%

,  

  
-



      y  =

'  ##$ % 
  

,   

  

    + ##$ % 

  

 '

,     
  "

  +

   ##$ %




  



y  = f (x, y)

!    .  /   
  ##$ % "

     '

  



   % 

  0   .        
   y  = f (x, y)           f (x, y)     
   G(x, y)   f (x, y)         
    y  G(x, y)  
1  !" 
 "  (x0, y0) ∈ G #     
       y = ϕ(x)   !
#  ! ϕ(x0) = y0 $

              

  
 y = ψ(x)  y = χ(x)      

     x = x0    ψ(x0 ) = χ(x0 ) 
  
   
  G   ψ(x) ≡ χ(x) 
  x ∈ G







     

    
 ! " 

 

  



   
$ !






    
 &

 " 



 &

! &

     




  

   


&



 ! 

 !    " % 
   

 ! 

&  % !

!     

&  !!  





! ! &     !

 # )(   ! 




(



! 

       !#

 

  " 

     * ! * 

 +,#--

  

 

 

           

# '!

    

y = ϕ(x)

(x0 , y0 )#

% "   


 



 & 

      #

    
    
  
 

 

dy
= f1 (x)f2(y),
dx

+,#-.

 !            !" !
 !     !   "
 
"
$  


+,#-. % /   ! 0 ## !

% 

 

  " 

  1


dx





  !




$  

!

  *

 &  

dy
= f1 (x)dx.
f2 (y)
+,#-+ ! 

 &



 & 

  +,#-.# 3  * "
& 

 

y

!     

 

  

x 
 &  dx    
dy # 2 ( %  *     
  f2 (y) ! !  f2 (y) = 0   
   x ∈ (a, b)# 3    +,#-.

 &  


 

+,#-+

# 2!  

y = ϕ(x) 



 "    +,#-+  

  % 



  


        ! 







   

  

  
    
 y          x  

           !  !  "
"    !   #       !  
"   "  y      x # 

x     



dy
=
f2 (y)



$%&'()

f1 (x)dx + C,

! C   "   
* +         $%&',) " - 
      -  $%&'()      - 
 y      x      +.  
 !     $%&',)     -"  - 
$%&'()         +.
-   !   
 /         f2 (y) = 0
       y ∈ (c, d) 0   
-    
  "   $x0, y0 )
      "   
! "   
/    f2 (y) + .   "     y = y1 
         -     1  
 + !   ! 
y


f2 (η)

$%&'2)

y0

  y → y1  !      
y = y1 

   f2 (y)   





 +    !  $%&'2)      f2 (y)
       y = y1  
 +   $x0, y0 )  
!"  Q : {(x, y), x ∈ (a, b), y ∈ (c, d)}   + 
  !
  ! "    .   y = y1 
 +    !  $%&'2)      f2 (y)
        
 y = y1  
 +    
y = y1   + 
  !   ! "      
     
+   y ∈ (c, y1 )  y ∈ (y1 , d)
    ! "     "       
y = y1  -   

 +    !  $%&'2)   y → y1 ± 0 
 -   !   

              
 yi  
 f2 (yi ) = 0 
  y = yi = const
   
 



  



2

2yy = 1 − 6x .

         
"  #

      

 !

2ydy = (1 − 6x2 )dx.

$ %   &  

"%





2ydy =



"#

  '#

(1 − 6x2 )dx,

y 2 = x − 2x3 + C.

(    "  &)#  % " # 
√  %  !
 $ % # *
" + &)  y = ± x − 2x3 + C  !
)  % "+    '  *' " "   

 ,   









y = −

y

x



        "  #
 %  # 



dy
dx
=− ,
y
x

"#
dy
=−
y



dx
⇒ ln |y| = − ln |x| + ln C1 ,
x

%

  "+   C0 "  &     ln |C1 | %
# * & + "& %   -  "+ +  '  # " % .!
# "  /
/  "# &)   
C1

y=

C
,
x

% C = ±C1 .

0  "  &)  "+  "  y(1) = 2  #
C
2
2= 
 C = 2   #       y = 
1
x
0  "  y # # %"
  +  y = 0 
"
C
  *   . #" y =
 C = 0
x



 



       

  
      
       y  = f (x, y)
         ax + by + c   a, b, c
          
     ax + by + c = t   t !  
   x
 



 


      

"#  
y  = cos(y − x).

             y−x = t !" y = t+x,
dt
+ 1 #   $
=
   %
     #&
dx
 
dt
dt
+ 1 = cos t ⇔
= dx.
dx
cos t − 1
#  "   ' 
 "   


dt
,
dx =
cos t − 1
  
t
x = ctg + C.
2
(%   %    %    '     t = y − x

yx

x = ctg
)    

  %

  
   



y−x
+ C.
2
 '

  

   %

 

   

  *  %
  %  ++   ,    %- &
          '    % x y -  &
      ,-       % % )   ,
*.   ++   ,    .-      '&

.  ' %-    '    * ' ,  
 "& '    %  %*    *   . Ox Oy 

              



 y 
  x 

º

    



      

y 
dy
=f
.
dx
x

f

 y

x
a <

 

y
x

< b
G

u ∈ (a, b)
(x, y)

  

f (u)

  



 

  



 

!"    "  # $

 $

 

   
 $  " $

"%

     f (u)     
a < u < b f (u) ∈ C(a, b)  f (u) = u    u ∈ (a, b)

  (x0, y0) ∈ G         


  

 



 * $

& ' $

 )

y = ux
xu  + u = f (u)



u = u(x)

$





$



 $ $ )

du
f (u) − u
=
.
dx
x
,

  + 



dx
=
x



ln |x| = Φ


Φ(u) =
,

 

du
·
f (u) − u

  +

du
·
f (u) − u
y 
x

    

$  "

    *

ln |x| = Φ


*" *   * $.  +

+

+ C,

 %    

 "  $ " 

-.   % 

C1 y

+

$

,    $



(

 

y 
x

(

'     

C1

$

x



C1 x

y









   

 f (u) = u   
 u1, . . . , un     
 (x0, y0) ∈ G             
           
u
c


,
f (ξ) − ξ



 u     !    " u1, . . . , un    u1

y
y = u1 x

y = bx
A3

B3

A2
A1

y = ax

B2
B1

C1

C3

C2

       
   
 

x
y  = f (y/x)

#  $           
%
 !       &   ! A1 !!
      
 A1B1B2C2  A1B1B3C3 . . .
'   (  " y = u1x
)   **  +  !      !%
         *! +
 ,-    f (x, y)   



   k  ! "  ! #$% λ" %
% & 

λ = 0"

%

f (λx, λy) = λk f (x, y).

#  *! + f (x, y) = 3xy − 2y2     *! +
"     
f (λx, λy) = 3λx · λy − 2λ2 y 2 = λ2 (3xy − 2y 2 ) = λ2 f (x, y).

              



          
 y  = f (x, y)           
 
P (x, y)dx + Q(x, y)dy = 0,

 P (x, y)  Q(x, y)         
      
y = tx ! t = t(x) "   #$ 

 

%

 



   !  "
(y 2 − 2xy)dx + x2 dy = 0.

&      ' () *      +
  *##$   ## $  P (x, y) = y 2 − 2xy 
Q(x, y) = x2 "   #$ x  y    , +
 y = tx  dy = tdx + xdt -+  . 
y  dy   ## $    /!

(x2 t2 − 2x2 t)dx + x2 (tdx + xdt) = 0.
&  0    0  )+    1
23+  ++   !  '

x2 (t2 − t)dx = −x3 dt;
dx
dt

= 2
;
x
t −t
t
·
ln C|x| = ln
t−1
,  0 2   )+ 03 !   
Cx(y − x) = y.
- ) 03 !     +2 #$2
y = y(x)   + 
-         23+  +1
+ +     x    .       
#$ x = 0 34 + + !    ! 1
 )  03  * #$    - 4 
4 ## $      )+ . 0 ≡ 0
   #$ x = 0 " 34  )  !
  
-     + + .     t2 − t *+
0+      2    )  



 



       

      t2 − t     
       t = 0  y = 0  t = 1  y = x 
       
 !    
"               
#      $     % $&    
 C = 0  C = +∞ '   %    " C 
     %     C     " %
 " " C = 1/C   " " 
 ( )% %  $&      

x(y − x) = Cy

       x = 0     $&    

    
    

    

 " 
 !        $"  
 "    "           
        *      "  
   "  $&     %  +    
              " 
  "   %   $       " 
   '   (        
   $      "  

 ,-./

 

    
      
dy
+ a(x)y = b(x).
dx

 

',-01(

*  b(x)           ',-01( % 
  "     $ % "     "  
  
 !       
*  b(x)            ',-01( % 
   "     
 !      
 
2$
             
 "   "          
   "   $    % 
     "
   " $
    
     
 "   "

              



 
       
             
     
dy
+ a(x)y = 0.
dx

 !"
#        $"  b(x) ≡ 0    
       %  &    !" ' 
'      %()


dy

= − a(x)dx ⇒
y

ln |y| = − a(x)dx + ln |C|.

dy
= −a(x)dx
y

* ' +   
   '      


     +

 "
    ,  %, - ,        
    , - +  (' 
'    (b(x) ≡ 0) 
  ", '    
    C         ..   
.  z(x)   C  ,  ' ' /01203245 6
  % ,    "
7   - , +  ('  '    


y = z(x)e− a(x)dx .
 8"
9  (:      . z(x) :  
 % :   8"     $" 9 '     
 .  8")
y = Ce−



 −

y = z(x) e



a(x)dx




+ z(x)e

a(x)dx



.

a(x)dx

 

− a(x)dx =


 ;"
0  F2y = −λ 
dt
     / " ""    .  
   ) ) /   " 0)
 y = 0      ! $   "
/
1    **#      
     "  

ma =
F.
0223





    



 a  
    F        
     
                
! F1  F2  "  !    Oy # $   !  
 %      &&'   Oy    " $
d2 y
     a   Oy   2  "      ((
dt
 $    
m


m

d2 y
dy
= −ky − λ
dt2
dt

d2 y
dy
+ λ + ky = 0.
dt2
dt

&&)
 "   " 

*    &&)      
 !  +(($   !   
   

,    "   "  ! !      

-  .  "      Oy   
F (t)     ( $    t
   &&) "  

d2 y
dy
m 2 + λ + ky = F (t)
&&&
dt
dt
 !          
/ %      &&&  m   %   
λ
k
F (t)
= 2b,
= ω2,
= f (t),
m
m
m

"      ! 0 !  %      
  ( 1
dy
d2 y
+ 2b + ω 2 y = f (t).
&&2
dt2
dt
*    &&2    
 !   ! ((  $
 !    
 "   "   !  +(($ 

/  
!  !   + 
  
3 #        "    ! (b = 0)      
   (f (t) ≡ 0)  +       &&2 "  

d2 y
+ ω 2 y = 0.
&&4
2
dt

 



     



 
     
      
 k2 + ω2 = 0   k1,2 = ±ωi    ! 

!  
Y (t) = C1 cos ωt + C2 sin ωt.
 "
# $   C1  C2   
$   N > 0  ϕ   %  &  
  C1  C2 ! 
C1 = N sin ϕ,

C2 = N cos ϕ.

'   N  % ϕ ()  C1 
C2  %*
N = C12 + C22 ,

+ ( 

C1

tg ϕ =

C1
·
C2

 C2    " & 

Y (t) = N sin ϕ cos ωt + N cos ϕ sin ωt = N sin(ωt + ϕ).

,&   !  

( $  

Y (t) = N sin(ωt + ϕ).

- % &   !  
( &  )     +
 T = 2π
& N .  & ϕ . $ %
ω
&  ω        
/ +$ $     (b = 0)&  
( f (t) ≡ 0&   !   ) # 0 
  1  
d2 y
dy
+ 2b + ω 2 y = 0.
dt2
dt
 

k 2 + 2bk + ω 2 = 0

2
2
k1,2 = −b ± b − ω

 23
 

4      
 &  b < ω # 0
√    ) 
* k1,2 = −b + ω i&  ω = ω2 − b2 5  ! 
 23  
Y (t) = e−bt (C1 cos ω
 t + C2 sin ω
 t) = N e−bt sin(
ωt + ϕ),





    

 C1 = N sin ϕ, C2 = N cos ϕ 
       
  
     N e−bt → 0  t → +∞   
y

0
t

 

  

     b > ω  
   " #    

Y (t) = C1 e(−b+



  

     
  $$% 

b−ω 2 )t

+ C2 e(−b−


b−ω 2 )t

! "

.

& '          
   (    )
 (  
  Y (t) → 0  t → +∞ #   (  ( 
         b = ω   

Y (t) = C1 e−bt + C2 te−bt .
* +    !          " )
  (b = 0)
  
       
f (t) = a sin μt ,
   (  $$-  


d2 y
+ ω 2 y = a sin μt.
dt2
.   '
  ȳ(t)  
Y (t)    .

$$


       !    )
 

  $$
.
 
  

  $$/

y  + ω 2 y = 0.

 





     



           
Y (t) = N sin(ωt + ϕ).

        
     !    μ  "  #
      "  ω $ " " " %    μi
   " &  ""'   k2 + ω2 = 0! 
   ȳ   "  
ȳ(t) = A sin μt + B cos μt.

(() ȳ  *!   ȳ (t) = −μ2(A sin μt + B cos μt)
    "  *  ȳ(t)  ȳ(t)   
     "%(() A  B +
−μ2 (A sin μt + B cos μt) + ω 2 A sin μt + ω 2 B cos μt = a sin μt,
   A = ω2 −a μ2 , B = 0 $ "  ,!   

"
    

ȳ(t) =

a
sin μt,
ω 2 − μ2

  %'  

-
, #
., 
 /  ," "     "   *a ω!
  , ω2 − μ2 ," "  /    "  ω2 − μ2
," ,   0 ω = μ ,  (  - , 
$ " " "  % μi = ωi   " &  ""'
  k2 + ω2 = 0!         
"  
a
sin μt + N sin(ωt + ϕ).
ω 2 − μ2
- !     μ 

y(t) = ȳ(t) + Y (t) =

0 

ȳ(t) = (A sin μt + B cos μt)t.

ȳ(t)



ȳ  (t) = 2(μA cos μt − μB sin μt) + μt(−A sin μt − B cos μt)

     !  μ = ω!     
"%(() A  B +
2μA cos μt − 2μB sin +μ2 t(−A sin μt − B cos μt)+
+μ2 t(A sin μt + B cos μt) = a sin μt,





      

A = 0, B = −

  
  

ȳ = −

a






    ȳ(t)

at
cos ωt,


          

y(t) = Y (t) + ȳ(t) = N sin(ωt + ϕ) −





at
cos ωt.



 
 t   
 !   "    #
     $  %       &' 
at
cos ωt       ) &  "     
'( −

   *"     +
 
"     !,   $      $
$ ! $  !
y

0

t

     
-  $!  ''( +!     %  
      " !      !    #
  $ (

 



     



          
      R  L  C   
          
          U = U (t) ! ! "#$!
L
b

c

R

C

U(t)

a

  

d

 



%              
& U '           !
(    )*+       
 ,          -

I = I(t)!

Uab + Ubc + Ucd = U (t).

. +   
Uab = RI(t)
Ubc = L

&

 /$

dI
1
, Ucd =
dt
C



t

I(t)dt.
0


dI(t)
1 t
+
I(t)dt = U (t).
dt
C 0
t       

RI(t) + L

0++   

2

R
 

dI
dI
1
+ L 2 + I = U  (t)
dt
dt
C

d2 I R dI
I
+
= U  (t).
+
dt2
L dt LC











             

        I     
        
 
     !   U    " #  
  $%  U  = 0   &    
  $
I  +

R 
I
I +
= 0.
L
LC

        
     

 ''(           
      2R = 1, 8      H = 2, 45 
        2r = 6    
√ 
            k 2gh
 g = 10  2   
!  h      
     k       "   "#$
#      %&'
)      * +    $ $ t , 
       $ $ h(t) ,   
           
"  (-%  ΔV = Sh = Sv Δt , .  $!  
  Δt  S ,  !      
 S = r2 πv(t)  v = v(t) ,    √
  
 !         "v = 0, 6 2gh%
R

H
h(t)
r
v

 



      

 

              



  
         
 Δt               
  ΔV = πR2 Δh !  "  ΔV #  # 
           $Δh < 0% #  
         # &  &    Δh Δt
πR2 Δh = −πr2 · 0, 6 2ghΔt.

  π &      " 
#   "" '     (

Δt → 0

R2 dh = −0, 6r2

2gh dt.

)  
  #   *   
     " '  h = h(t)(

r2
2 h = −0, 6 2
R

t

2gt + C.

+   C     #  h = H 
h    " '  #  C (

t = 0 +

 


C = 2 H,

 " '         h 
    (






 

t

g r2
t
2 R2

$,,-%
   &   #      
h = h(t)(



h−

h=

H = −0, 6


H − 0, 6

g r2
t
2 R2

2

.

. &     tk  #     
&  *   *  $,,-%      t  
#  "   h = 0 +# 
R2
tk =
0, 6 r2

 
√ 
2 √
H− h
g

$,,/%
0    #     $,,/%   
 #     # ( R = 0, 9  H = 2, 45  r = 0, 03 
g = 9, 8 122   
  #   (
0, 92
tk =
0, 6(0, 03)2



2
9, 8

.

h=0

2, 45  ≈ 1006  ≈ 16, 7 

.









             

          
           
             
 !     "  #  $ %  
&' ( # $         (


 v = v(t)       
dv
t  v(0) = 2        m = F (t) 
dt
F (t)     !"     m      
#  $ " % $$&   
F (t) = −kv(t)  k > 0  '((& $$&   
 #  #   $ $  )"  ")*
   !"     "  +, -
' , % $$ "% $,  % $'  ((*
&  )"   

m

dv
= −kv.
dt

.   "! " $%   "
$%,   " $ #

m

dv
= −kdt
v

=⇒

m ln |v| = −kt + ln |C|

   -!   
k

v = Ce− m t .
  #

 v(0) = 2 $'  C = 2 
k

v(t) = 2e− m t .
/

 (  #       # 0  %
k
−4
k
: 1 = 2e m    
v(4) = 1 ) $  #
m
k
ln 2
=

m
4
t
 -    V (t) = 21− 4  1" T  # *
      23 4  ,  "

              
T

T

0, 25 = 21− 4



   



2−2 = 21− 4 −2 = 1 −




t
s(t) =

t

0

 !"

 





 

    

#



T = 12




t
8 
1 − 2− 4 .
ln 2

t

0





   

21− 4 dt =

v(t) dt =

T
4



8
ln 2

11, 5

  

 

 



            
             
     !      !
    "  #     $    
    #  %!      "  &
     '(   ) g !
   $2*
$$%

&




'



(

)  

'

    

    +

 ,   



#

v(t)

Fdrag



t

*

 



* 

'

'  

-

(

Fdrag = kv 2 (t),
k



* .+

,  
 

 + 

'   


 +








  

 '

  (

ma = mg − Fdrag ,
a



* 

/ 








'

 
 -







dv
dt

   

'

dv
= mg − kv 2 .
dt
k
= η  ) 

m
1 dv
1
= g − v2.
η dt
η

m
  

a =

v



 

+

t











             

          
             
 
dv
1
 = dt;
− 
η v2 − 1 g
η

dv
1


t=−
η
v 2 − η1 g

            
  !    v(t)   


v=



g 1 − e−2 ηgt

·
η 1 + e−2 ηgt

"   #         η$ 
        %     
   &' ( $ )       t → +∞   v(t) !
    &' ( $ "      
  t → +∞ *   η


lim v = lim

  

t→+∞


50 =

t→+∞

g
,
η



g 1 − e−2 ηgt

=
η 1 + e−2 ηgt

η
1
=
,
g
2500

η=



g
,
η

g
·
2500

        η    v(t) 
    
g

1 − e− 25 t
v = 50
g ,
1 + e− 25

v = 50

e0,2t − e−0,2t
1 − e−0,4t

50
·
1 + e−0,4t
e0,2t + e−0,2t

+               
      ,         
   %*      *  
  
ds
e0,2t − e−0,2t
= 50 0,2t
,
dt
e + e−0,2t

              
 



 s = s(t)      

t
s=

50
0

e0,2t − e−0,2t
dt =
e0,2t + e−0,2t

= 250 ln(0, 5(e0,2t + e−0,2t ))|t0 = 250 ln(0, 5(e0,2t + e−0,2t )).
     
   
 
 
    
0,2t

e

            
   et + e−t ≈ et         t
     !        


250 ln (0, 5(e0,2t + e−0,2t )) = 1000;
+e
= 2e4 ⇒ e0,2t ≈ 2e4 ⇒ 0, 2t ≈ 4 + ln 2;
t ≈ 20 + 5 · 0, 7 = 23, 5 .
−0,2t





""#$  
    

%

   
 #  
  
  
    

      

&      !
 '    

        
(

 Ox# )   
        !   # 
 AM   !  *  MO + # ,-#
y
K1

M(x,y)
A

K

N
0

B

x

y=f(x)

  

    









             

 y = f (x)        x     
                
        
      y = f (x)    KK1   MN 
                  
  !     AM     Ox ∠OKM =
= ∠AMK1 = ∠OMK = α "         OKM # $
  %     O  |OM| = |OK|     $
      OMB     |OM| = x2 + y2 &  ' 
|OK|  !
      
Y − y = y  (X − x).

   Y = 0 &             Ox'
   X = x − yy   
|X| = |OK| = −X = −x +

    
 

OM
y
,
y

x2 + y 2 = −x +



OK 



y
·
y

   ((  )
y =

y
x+

x2 + y 2

,

            %     
*        % ((  ) %
 y  $

           !    y = f x +
y =

y
x+

x2

+

y2



1+

y 
y/x
.
≡f
2
x
1 + (y/x)

&,,-'

.        )      $
 &,,-'    x       +
x+
dx
=
x =
dy

x2 + y 2
x
= +
y
y

 
 
2
x
x
.
+1=f
y
y

&,,/'

0        &,,/'       t = xy 
  x = ty x = ty +t            
t y + t = t +



t2 + 1 =⇒ t y =



t2 + 1.

              

     
    


       


dt
dy

=⇒ ln |y| = ln |t + t2 + 1| + ln C
=
2
y
t +1

y = C(t + 1 + t2 )


x
      !  ! t = y " 



 2
x ⎠
x
y =C⎝ + 1+
.
y
y

     #     
2

y
=x+
C

  x   





x2 + y 2 .

       

4



  

2

y
2y x
+ x2 = x2 + y 2

C2
C

    $#      $   


y2

y2
2x

2
C
C





C
= y 2 =⇒ y 2 = 2Cx + C 2 =⇒ y 2 = 2C x +
.
2

          $"   !
 
 C "    %    − C2 , 0 " &  #
        ' "   "     $
   !   !   "  &   $ 
 



 (()  

  

   ◦   ◦ 
       ◦ !
  "  #◦$ %& ' (    " 
)         "*
 ((( +, " (   '-  ,.  
   /  0   )  
     '-1     /  2"(  
 3 (  , . "  3 !   







  
g = 10  



             

  













     

           R = 6 
  H = 10    !"  #    $   %
   %        "      
& '     #    (
#

%

       )  0, 6 2gh " g = 10  2 *
     %+   h *    %     ,

 ("   "     
  -    %
 )   "  ,
  (
+      .  "  % ./
 " "  0%   " 
  "  h 1 "  / 
  %       R ! + ,
       2 "         
  -  "    ,
 % v +" % +  
    p      %          ,
  +   ρ     -  %  +  
μ
!          
  -   ,
% )    
    %     ,
  % %    3       +   
) 3 v  - )  % % r  ) " %
+       

















 3           ,
  % )    )    -  
#)     %
 3       )  ) 
 4           ,
)
!         2a
 3    
 % )    )    %     

       ,
    

 3          % 
)          -    ,
 %

      



     


  
      
         
        ! 
"         #
  $  
 



        

  #    ! #    
 %   &  !    
      "#       
       
"         !  #  
   ' !         
  %  (  #    
# %         
)  %    %  *  ( 
  ( #      *  %
          
+     k   #  s1, s2, . . . , sk &
   $    n = s1 + s2 + . . . + sk  
#  #  %  (*  #   
        !  !    
       
 ,-.    n       
       
    
             

        

dy1


⎪ dx = f1 (x, y1 , . . . , yn ),



⎨ dy2
= f2 (x, y1 , . . . , yn ),
/,-.0
dx


.....................




⎩ dyn = fn (x, y1 , . . . , yn ).
dx

1 n    

 

  /,-.0



 

   

       
          
y1 (x), y2(x), . . . , yn (x),

  !         "  
#  $ % 
       
y1 (x), . . . , yn (x)      $
   

 
  

y1 (x0 ) = y10 , . . . , yn (x0 ) = yn0 ,

 x0 , y10 , . . . , yn0   !   $
  
" 
yi = yi (x), i = 1, . . . , n,
 #
$     $   (x, y1 , . . . , yn )    %   
&     &   ! '  ( ! 
yi (x0 ) = y10 , i = 1, . . . , n, '   ( !   
 #    
  $ ! 
!% (x0 , y10 , y20 , . . . , yn0 ).
)   ! %   
 
% ( %   %%
     **  + (     (  
 %, !% % 
$ $  , %  
 



'   yi = yi (x, C1, C2, . . . , Cm ),
!       
 " !   )   C1, . . . , Cm,
 " ) $ * ( )  " ! +  
,$ m = n.
 . '   Φi(x, y1, . . . , yn) = 0,
i = 1, . . . , n(    &    (   ) 
     &    +  
'   Φi(x, y1, . . . , yn, C1, . . . , Cm ) = 0( &
i = 1, . . . , n(    ! &    (  
 C1, . . . , Cm " ) $ ** & * *
  

#
i = 1, . . . , n(   
 G,  (  

      




             
                 
  m    



d2 x
dx dy dz


,
m
t,
x,
y,
z,
,
,
=
F

x


dt2
dt dt dt




⎨ d2 y
dx dy dz
m 2 = Fy t, x, y, z, , ,
,

dt
dt dt dt






d2 z
dx dy dz


.
⎩ m 2 = Fz t, x, y, z, , ,
dt
dt dt dt

 !"#

$ x(t), y(t), z(t) %            v
   a    
dy
dz
dx
i + j + k,
dt
dt
dt

 !&#

d2 x
d2 y
d2 z
i
+
j
+
k.
dt2
dt2
dt2



v=

a=
 


   
 
$ 


 

  




      

F = F x i + F y j + F z k

  

  

       

! 

 

  "

  #   

 %   "" & 

'!&        

    



  

 #& "" & 
#&  & " )
*

 



 



m



 

     


 

  (  



 

x = x(t), y = y(t), z = z(t)
 %    

dx
dy
dz
, v(t) = , w(t) = 
" u(t) =
dt
dt
dt
d2 y
dv d2 z
dw
,
=
=
    
dt2
dt dt2
dt

$ (

 

 

d2 x
du
,
=
2
dt
dt

 % +



)















































  

du
1
= Fx (t, x, y, z, u, v, w),
dt
m
dv
1
= Fy (t, x, y, z, u, v, w),
dt
m
dw
1
= Fz (t, x, y, z, u, v, w),
dt
m
dx
= u(t),
dt
dy
= v(t),
dt
dz
= w(t).
dt



        

   

  

!

"

   



  

  






          
    fi (x, y1, . . . , yn)  i = 1, 2, . . . , n     
∂f
, i, j = 1, 2, . . . , n            
  ∂y
x, y1 , . . . , yn     !  G   !  !   "#
  $ x0, y10, y20, . . . , yn0   % !  G  % #
 
    &    y1 = y1 (x) y2 = y2 (x), . . . ,
yn = yn (x)  $'% (   "  $)
i

j

y1 (x0 ) = y10 , y2 (x0 ) = y20 , . . . , yn (x0 ) = yn0 .
# 
 

 

$ 

 
%
 



 

  

   

  

$ 

    

 & 

 

    '  $

 +  

 

" 

    
* $
, 





 

" 



  "
 

  

 $  , (

n

   

n(
+

)

$ *  

 ( *

      $ &  

"

( 
" 

 

$ & 

" 

      



  



 
  !!


dx


= y 2 + sin t,

dt
dy
x


⎩ = ·
dt
2y

 



 

        

d2 x
dy
= 2y + cos t.
" #$
dt2
dt
dy
= x, &!    " #$
%       ! 2y
dt
!'   (   
d2 x
− x = cos t.
dt2

" )$

* +          ,  
! ,&
 !  -+!  ,  ,   
+ ./      λ2 − 1 = 0 0 , 
λ1,2 = ±1 &! /        !  
X(t) = C1 et + C2 e−t  1        /!
!!  +2 ,&
     x̄ = A cos t + B sin t
   &  '  ' +    
" )$  ! A = − 12 , B = 0 , +!   
x̄ = − 21 cos t
3, !  ! /      " )$ !!  

x = C1 et + C2 e−t −

1
cos t.
2

%       !  !

y2 =

dx
1
− sin t = C1 et − C2 e−t − sin t.
dt
2

3, !  ! !!    !

x = C1 et + C2 e−t − 12 cos t,

y=±

C1 et − C2 e−t − 12 sin t.



 





  





   

 


dx

= z − y,



dt


dy
= z,

dt




⎩ dz = z − x.
dt
          

d2 x
dz dy
− ·
=
dt2
dt
dt
        !  "  
d2 x
+ x = 0.
dt2
 #    $$  !       
 $  " $#
   %    $&
 $    λ2 + 1 = 0  '   $ ! λ1,2 = ±i
 (  
x = C1 cos t + C2 sin t.
)*  +     " 
dz
− z = −x 
dt
dz
− z = −C1 cos t − C2 sin t.
dt
(   (     
dz
− z = 0 +
dt
z = C3 et .
,        (   &
-" $#
    

z = A cos t + B sin t.
 $#

  A B      !

B − A = −C1 ,
−B − A = −C2 .

      



C2 − C1
C1 + C2
, B=
.  
2
2
1
1
z = (C1 + C2 ) cos t + (C2 − C1 ) sin t + C3 et .
2
2

  

A=

      

 

 

1
dx
1
= (C1 − C2 ) cos t + (C1 + C2 ) sin t + C3 et .
y=z−
dt
2
2

    

   





x = C1 cos t + C2 sin t,





1
1
y = (C1 − C2 ) cos t + (C1 + C2 ) sin t + C3 et ,
2
2




1
1

⎩z = (C1 + C2 ) cos t + (C2 − C1 ) sin t + C3 et .
2
2

 



 

 

          !      "
  #$          
  #        !      "
              % &

            % '  (
  n               #   
 % )   $             
 !       #*      %
 +,%-  
 

dx
y


=− ,
dt
t

⎩ dy = − x ,
dt
t

t > 0.

.     ! $       $  "
 
d
1
(x + y) = − (x + y),
dt
t

         #*   
d(x + y)
dt
=− ,
x+y
t

 



 

   

    
 
      
x+y =

     
C1
·
t

         
         

 

  

d
1
(x − y) = (x − y),
dt
t

     



 

     

x − y = C2 t.

  

   



C1
,
t
⎩x − y = C t
2

 
 #



x = x(t)

x+y =

y = y(t)   !"    




1 C1


x
=
+
C
t
,
2

2 t


1 C1


⎩ y=
− C2 t .
2 t

 $%&  

 


dx


= x2 y,
dt

⎩ dy = y − xy 2 .
dt
t

'  (   # )   !       y     
 * x     
   
y

dx
dy
xy
+x
=
dt
dt
t

d
xy
(xy) =
·
dt
t

+,          
  

xy = C1 t.





-$%./0

      



   
          xy 
dx
= C1 tx   
C1 t   
   
dt

t2

         x = C2 eC1 2    C2 = 0
    !"#$%   
y=

C1 −C1 t2
C1 t
2 .
=
te
x
C2

&' (    ( ) 

2
⎨x = C2 eC1 t2 ,
t2
⎩y = C1 te−C1 2 .
C2

   

*       x = 0          
  y = 0          x = C 

y = Ct+

 
 

    
   

 

 



,     -      n   .
. /-      ' ../0
dyi 
=
aij yi + fi (x),
dx
j=1
n

i = 1, . . . , n,

!"##%

 aij = 12345 6 '   ' ../
    .'/ fi (x)        !"##% 
             fi(x) ≡ 0,  
      7       
    -  ) yi (x) ≡ 0.
,             
  !"##%    0

dy1


= a11 y1 + a12 y2 + . . . + a1n yn ,


dx




⎨ dy2 = a21 y1 + a22 y2 + . . . + a2n yn ,
dx
⎪ .................................







⎩ dyn = an1 y1 + an2 y2 + . . . + ann yn .
dx

!"#8%



 

   

  
        
        A  n        
dy
  y     
!
dx



a11
⎜ a21
A=⎜
⎝ ...
an1

a12
a22
...
an2

#  



. . . a1n
. . . a2n ⎟
⎟,
... ... ⎠
. . . ann









dy ⎜
=⎜
dx ⎜



y1
⎜ y2 ⎟

y = ⎜
⎝ """ ⎠ ,
yn

dy1
dx
dy2
dx

""
"

    $%&"''(    

 

 +  




⎟.




dyn
dx

  !

dy
= Ay.
dx

*



$%&"')(


  n 
$%&"',(

y1 = α1 eλx , y2 = α2 eλx , . . . , yn = αn eλx ,

-    αk    -   
     λ      "
  αk  λ       
   yk = λαk eλx , k = 1, . . . , n  
  $%&"'.(" /     
     α1 , α2 , . . . , αn !

 

yk 

  

  $%&"',(  
   
-   


(a11 − λ)α1 + a12 α2 + . . . + a1n αn = 0,




⎨ a12 α1 + (a22 − λ)α2 + . . . + a2n αn = 0,

....................................




an1 α1 + an2 α2 + . . . + (ann − λ)αn = 0.

$%&"'0(

1  $%&"'0(       +    
 2        " "

α1 , α2 , . . . , αn 

(a11 − λ)
a12
a21
(a22 − λ)
...
...
an1
an2

...
a1n
...
a2n
...
...
. . . (ann − λ)

= 0.

$%&"'%(

      



          
  n       λ      
          ! "    #  
      n    λ! $ %  
 & #     n  ' λ1 & λ2 & . . . & λn &    (
       ) A *       
     ! +     '
|A − λE| = 0,

 E ,       ) n   &   -! 


.

(A − λE) · b = 0,

 b = (α1, α2 , . . . , αn) ,       ) A  
     ) A     b&    (/ 
  ( Ab = λb!
 + &           
!&         ) A&   
 &   +     (     
   & % #        
  0  &     ( λk    
(α1k , α2k , . . . , αnk )&  k = 1, 2, . . . , n * #      11
)      n        .
 '
2 .  y1 (x)&   (/  ( λ = λ1&    n
1) '
y11 = α11 eλ1 x , y21 = α21 eλ1 x , . . . , yn1 = αn1 eλ1 x ;

 .  y2 (x)&   (/  ( λ = λ2&    n
1) '
y12 = α12 eλ2 x , y22 = α22 eλ2 x , . . . , yn2 = αn2 eλ2 x ;
................................................................................................
n2 .  yn (x)&   (/  ( λ = λn &    n
1) '
y1n = α1n eλn x , y2n = α2n eλn x , . . . , ynn = αnn eλn x .



 



  

      y1(x), y2 (x), . . . , yn(x)   
            
        
y = C1 y1 (x) + C2 y2 (x) + . . . + Cn yn (x)

     


y = C1 y11 (x) + C2 y12 (x) + . . . + Cn y1n (x),


⎨ 1
y2 = C1 y21 (x) + C2 y22 (x) + . . . + Cn y2n (x),
.................................


⎩ y = C y (x) + C y (x) + . . . + C y (x),
n
1 n1
2 n2
n nn



 !" #

$    %  yij (x)


y = C1 α11 eλ1 x + C2 α12 eλ2 x + . . . + Cn α1n eλ1 x ,


⎨ 1
y2 = C1 α21 eλ1 x + C2 α22 eλ2 x + . . . + Cn α2n eλ2 x ,
..........................................


⎩ y = C α eλ1 x + C α eλn x + . . . + C α eλn x .
n
1 n1
2 n2
n nn

 !"&#

'     (  
 )     !"#  
    #   *         
  )     )  *  +    
)  )    n)     + % 
   !   % #!
  !,          
       

  


dy


= −y − 2z,

dx
dz


= 3y + 4z.

dx

-    . /  + %   a11 = −1, a12 = −2,
  %  y1 = y,
0   (  
      !"#.

a21 = 3, a22 = 4*

(−1 − λ)
−2
3
(4 − λ)

y2 = z !

= 0 ⇒ λ2 − 3λ + 2 = 0.

1    λ1 = 1, λ2 = 3!
2          y = α1 eλx, z = α2eλx *   
   λ1 = 1! 3        !",#*   α1 , α2*

             








 

  



(−1 − λ)α1 − 2α2 = 0,
3α1 + (4 − λ)α2 = 0,
    
 λ = λ1 = 1  
  
    






! 
 ! 
 "
#       

α1 + α2 = 0,

 
 α1 , α2         $  
α1 = 1    α2 = −1 $ %  
     λ = 1

   & 

y1 (x) = ex ,

z1 (x) = −ex .

' !     
 


 "
 λ = λ2 = 2  
 
 α1 = 2, α2 = −3 "
 ( 
  
  %  
 
   )    

   & 

y2 (x) = 2e2x ,

z2 (x) = −3e2x .

*  +    ,     &   
     & 
 
y = C1 y1 (x) + C2 y2 (x) = C1 ex + 2C2 e2x ,



z = C1 z1 (x) + C2 z2 (x) = −C1 ex − 3C2 e2x .
' !  ( # #  &  #   (
   (  "
 .  %,, . 
        


  # )         (   (  "
 ( # #(

       
     

            

   


dx


= y,

dt
dy


= −x.

dt











       

           

        
d2 x
dy
=
dt2
dt

   

dy
dt

     
d2 x
+ x = 0.
dt2

                
    λ2 + 1 = 0      λ1,2 = ±i
   !    x = C1 sin t + C2 cos t"   
   !
#       $%&"'(
  y = C1 cos t − C2 sin t" )*   $%&"'( 

x = C1 sin t + C2 cos t,
y = C1 cos t − C2 sin t.

 %&"+  

 


dx


= y,



⎨ dt
dy
= x,

dt



⎪ dz

= x + y + z.
dt

      ,       


  

dy
d2 x
=
dt2
dt

  -      

d2 x
− x = 0.
dt2

)                 
    λ2 − 1 = 0    *  
 λ1,2 = ±1    !   
x = C1 et + C2 e−t .

             

 
  



         

dx
= C1 et − C2 e−t .
dt
      x(t) y(t)
     z
y=



    

dz
− z = 2C1 tet .
dt

            
     
z = C3 et + 2C1 tet .

!"#      


⎨ x = C1 et + C2 e−t ,
y = C1 et − C2 e−t ,

z = C3 et + 2C1 tet .

$%&'()

 %&'*           
       

dx
x


=
,

dt
2x + 3y
dy
y


=
·

dt
2x + 3y

     +
            ,
 , " ,        +
dx
x
dx
dy
= ⇒
=
⇒ ln |x| = ln |y| + ln |C1 | ⇒ x = C1 y.
dy
y
x
y

-            
    '  ,  ,
" ,    #.      +
2

dy
2x
3y
dx
dy
dx
+3 =
+
⇔2 +3
=1⇔
dt
dt
2x + 3y 2x + 3y
dt
dt
⇔ d(2x + 3y) = dt ⇒ 2x + 3y = t + C2 .









           

      
x = C1 y,
2x + 3y = t + C2 ,

               
 

C1 (t + C2 )


,
⎨ x=
2C1 + 3

⎪ y = t + C2 ·

2C1 + 3

   

 


dx


= y − z,



⎨ dt
dy
= x + y + t,

dt



⎪ dz

= x + z + t.
dt

    ! "#$ #        $  %
#    
d
(y − z) = y − z,
dt

&     $     
ln |y − z| = t + ln |C1 |,

&      $ #
y − z = C1 et .

' #( )   $% &   $   
      %       $    
          
x = C1 et + C2 .

*     + 
 *#     $ y!

x = x(t)

dy
= y + C2 + C1 et + t.
dt

      

             



            
    
y = (C1 t + C3 )et − t − 1 − C2 .

             
    x y 

z=y−

dx
= (C1 t + C3 − C1 )et − 1 − C2 .
dt

!"#       


x = C1 et + C,



y = (C1 t + C3 )et − t − 1 − C2 ,



z = (C1 t + C3 − C1 )et − 1 − C2 .

 $%&'          
          

dy


= 5y − z,
dx

⎩ dz = y + 3z.
dx


( )        "#
*   +$%&,,-          
a11 = 5, a12 = −1, a21 = 1, a22 = 3,     "   
y1 = y, y2 = z & .      +$%&,$ 

(5 − λ)
−1
1
(1 − λ)

= 0 ⇒ λ2 − 8λ + 16 = 0 ⇒ (λ − 4)2 = 0

  / λ1,2 = 4   0&
      "  /    
   &     
     
    * λ1,2 = 4    
y1 ≡ y(x) = e4x (A1 x + A2 ),

y2 ≡ z(x) = e4x (B1 x + B2 ).

1         y(x)
dy
= A1 e4x + 4(A1 x + A2 )e4x ,
dx

z(x)

dz
= B1 e4x + 4(B1 t + B2 )e4x ,
dx





dy





           

dz

,
, y

z   
 
dx dx
   e4x = 0  

 

 

A1 + 4(A1 x + A2 ) ≡ 5(A1 x + A2 ) − (B1 x + B2 ),
B1 + 4(B1 x + B2 ) ≡ A1 x + A2 + 3(B1 x + B2 ).

            x  
             
A 1 , A 2 , B1 , B2 
4A1 = 5A1 − B1 ,
4B1 = A1 + 3B1 ,

A1 + 4A2 = 5A2 − B2 ,
B1 + 4B2 = A2 + 3B2 .

        A1 = B1  
  
A2 − B2 = A1  ! A1 = C1   A2 = C2   B1 = C1 , B2 =
= A2 − A1 = C2 − C1  "#  $ %    

 


⎨ y = e4x (C1 x + C2 ),
⎩ z = e4x (C1 x + C2 − C1 ).

 &'&          
          

dy


= 2y − z,

dx
dz


= y + 2z.

dx

(%
 )         $
     *&'++,          
a11 = 2, a12 = −1, a21 = 1, a22 = 2,      $  
y1 = y, y2 = z  -      *&'+&,
(2 − λ)
−1
1
(2 − λ)

= 0 ⇒ λ2 − 4λ + 5 = 0

  λ1 = 2 + i, λ2 = 2 − i
.    %   
y = α1 e(2+i)x ,



 $



z = α2 e(2+i)x ,



λ1 = 2 + i

             



         α1 , α2  
        !   
(2 − λ)α1 − α2 = 0,
α1 + (2 − λ)α2 = 0,

"   #" ! λ = λ1 = 2 + i #$ %&  $ & %
# "$$!    $  "'  "      
−iα1 − α2 = 0,

#  "   %$ α1 , α2    ! # $!  ($ 
α1 = 1 #$% α2 = −i (      %  λ = λ1 =
= 2 + i  %   ) 
y(x) = e(2+i)x ≡ e2x (cos x + i sin x),
z(x) = −ie(2+i)x ≡ e2x (sin x − i cos x).

*"  "$''      %  #$% + 
)  %  # +"  + )   + $  
    '  $    ,,    '$'' )  
#$%  " $     +  + %  + ) '
y1 (x) = e2x cos x,
z1 (x) = e2x sin x,



y2 (x) = e2x sin x,
z2 (x) = −e2x cos x.

* )    " $  '   ' #$% 
+  + %  + )   # $!    
 
y = e2x (C1 cos x + C2 sin x),
z = e2x (C1 sin x − C2 cos x).



  

            

   


dx


= x + y,

dt
dy


= 3y − 2x.

dt









           

           



   






dx


= y + 1,

dt
dy


= 2et − x.

dt

           



   


dx


= y + z,



⎨ dt
dy
= x + z,

dt



⎪ dz

= x + y.
dt

        
       

dx


=
dt

⎩ dy =
dt

  ! "# 
   $

  

x
,
x+y
y
.
x+y

  $ %!   & 

        
       

 
  


dx


= y − z,



⎨ dt
dy
= x2 + y,

dt




⎩ dz = x2 + z.
dt

  ! "# &          
$ %! '     &      &    $
(! '        x      $

             



           
          

dx


= 7x + 3y,

dt
dy


= 6x + 4y.

dt

           
          

dx


= x − y,

dt
dy


= x + 3y.

dt

           
          

dx


= x − 2y,
dt
dy


= x − y.
dt

           
          

dx


= x − 3y,
dt

⎩ dy = 3x + y.
dt

            
          

dx


= 2x + y,
dt

⎩ dy = 4y − x.
dt

 

       



           
         
   




y  − y  = e2x cos x

    

    
    
 
         
            ! "
#$  % & '!!  ( ) * !  ""&!
 "*  +)      
      , -  , . ( /!
     *) (   !!  
      .  & *)    
         "&  "  &

  
  

   
   

0!              
*   )!&1 )  2    )!&31 " 

  )!  
4)!&  !" *$ )!& "!  5
)! !1   *   !  *&  1 !!  
 -  "* $  &)! $ !&  
+ &   )!&     
         "* & ! 6  !" * !  
        ! * $#! " 1 
        1    '     " 
   7  ! 8 ! )   ! " ) 
    "    )!& " *  9  &
 "    ! "& &   ! " )
    )!&  6 & & !!   1  







     

               
               
      
      
                
            

 !"# 

y =

y−x
y+x

             
 
1
y
ln(y 2 + x2 ) + arctg = C.
2
x

$!"#%


$!"&%

'         (    y(x)  
     (
    $!"&%    
          
     
     ))  (    $!"#% * 
     +       
 
               , 
             
    -         $!"#%
    )        
    $ &.% /      (r, ϕ)    
  $!"&%       r = Ceϕ 
          
  ,       
   
      
 (       
) (   
 
     ,  
             
            0       
 
  1 +     
   (
/   ,        
 
   
            
   2        y(x)
   

 un (x)  n → +∞ , un (x)      +
 ) (         3    
  n     ,      

       y(x) *        
       ,           

 

       

     



     

 
         
         
     !!" # $  
      %    #
       
     !!"   & 
        %
     y(x)       % '
 Dh : {xn }     
 "  
 # (   %   )  
  )  
      
  % *     % $   
  +        
      %   ,  '
     % 

 
(    
   
%  # % -  
  
   %    %     
     %     .'
        % 
   '
 %          '
     %  











     

   


y  = y − x,
y(0) = 1.

      

 



0  x  100,

   

y = 1 + x + Cex .

      y(0) = 1    C = 0    !
 y(100) = 101"         
  y(0) = 1,000001 #   C = 10−6  
y(100) = 2,7 · 1037 ""        "
 
         
    

    
 #    $$ %  
    &         !
    #   " '($$ % & (  
  & 
  )   * % +,
$  *+,"+-.." /      #   !
      $$ %  &      
* ' .
F (x, y, y  , y  , . . . , y (n−1) , y (n) ) = 0,
*01"-.
*01"2.
3  &  &      $$ %  
      
(n−1)

y(x0 ) = y0 , y  (x0 ) = y0 , y  (x0 ) = y0 , . . . , y (n−1) (x0 ) = y0

(n−1)

F (x0 , y0 , y0 , y  , . . . , y0

(n)

, y0 ) = 0,

         n!

x = x0 

.

   

*01"4.
5 $$ %     *01"-.       
  x, y, y, y, . . . , y(n)      (n + 1)!
  y(n+1) 
F1 (x, y, y , y  , . . . , y (n) , y (n+1) ) = 0.
*01"0.
(n)

(n−1)

y0 = f (x0 , y0 , y0 , y0 , . . . , y0

).

 
(n)
y0

       

 
   
   
(n)

(n+1)

F1 (x0 , y0 , y0 , y0 , . . . , y0 , y0



  

) = 0,

   !   n + 1"   
(n+1)
x = x0 # y (n+1) (x0 ) = y0
! $ % & !    "
 &     x = x0
)
'& y = y(x)   ((%  
!        *#
y(x) = y(x0 )+y  (x0 )

x − x0 
(x − x0 )2
(x − x0 )n
+y (x0 )
+. . .+y (n) (x0 )
+. . .
1!
2!
n!

+
   +     x0 
      & ,"
  ,!-  &   ((%"
    #
n
x − x0
(x − x0 )2
(n) (x − x0 )
+ y0
+ . . . + y0
+ ...,
1!
2!
n!


         "
           -
 .   
     
y(x) = y0 + y0

           

⎨ y  = 2xy  + 4y,
y(0) = 0,
⎩ 
y (0) = 1.

/

'  &    # 0  ((%
  ((%      "
   1 $ !   
   x0 2 
3 /  y = 2xy + 4y ⇒ y0 = 2 · 0 · 1 + 4 · 0 = 0
4((%
/ 




y = 2y + 2xy + 4y = 6y  + 2xy  ⇒ y0 = 6 · 1 + 2 · 0 · 0 = 6.
56
4((%
56 
IV



y = 6y + 2y + 2xy = 8y  + 2xy  ⇒ y0IV = 8 · 0 + 2 · 0 · 6 = 0.
55



 

      


V





 

y = 8y + 2y + 2xy

IV

= 10y  + 2xy IV ⇒ y0V = 10 · 6 + 2 · 0 · 0 = 60.


   y0V I = 0, y0V II = 840   
 !  " "  x0 = 0  #$
 % "   & '
y=

  !

6
1
60
840 7
x + x3 + x5 +
x + ...
1!
3!
5!
7!
y =x+

x3 x5 x7
+
+
+...
1!
2!
3!

(  )*  *   ! % " " 
   +) , C0, C1, C2, . . . , Cn, . . .'
+∞


Cn (x − x0 )n .

n=0

-+) ,) Cn(n = 0, 1, 2, . . .)  .)! $
) + "    " * ! "$
  "" ,"   ")*  * .$
 (x − x0) " "  "  *  ""
/ * % " "   $
  +)* ,"  /0 "
"  #)"         
          

  

1
y  + y  + y = 0.
x

1

2   x = 0 " 3  .! 
 x = 0  0""  " 
4% .  !  0!/ )*  "'
y = c0 + c1 x + c2 x2 + c3 x3 + . . . + cn xn + . . .

 ,     /0 ")$
  #")*'
y  = c1 + 2c2 x + 3c3 x2 + . . . + ncn xn−1 + . . .

y  = 2c2 + 2 · 3c3 x + 3 · 4c4 x2 + . . . + (n − 1)ncn xn−2 + . . .

 

       



          
(2c2 + 2 · 3c3 x + 3 · 4c4 x2 + . . . + (n − 1)ncn xn−2 + . . .)+
1
+ (c1 + 2c2 x + 3c3 x2 + . . . + ncn xn−1 + . . .)+
x
+(c0 + c1 x + c2 x2 + c3 x3 + . . . + cn xn + . . .) = 0.

        x! " #
  $    c0, c1, c2 , . . .
%"&  "  '( x1  )    &  
1
c1 !    c1 = 0!     $ " " 
 *+
x
! " ,    '!   c1 = y x=0= 0
    - y  -   x = 0 - 3
. ,     "&   x, x ! x5  
2 · 3c3 + 3c3 + c1 = 0,
4 · 5c5 + 5c5 + c3 = 0,
6 · 7c7 + 5c7 + c5 = 0.

/  c1 = 0!       "&   
"
c3 = 0,

c5 = 0,

...,

c2k+1 = 0.

 $    +    "&   
0 (        x0, x2, x4, . . .
2 · c2 + 2c2 + c0 = 0,
3 · 4c4 + 4c4 + c2 = 0,
5 · 6c6 + 4c6 + c4 = 0.

%,  +  


(n + 2)(n + 1)cn+2 + (n + 2)cn+2 + cn = 0

. -  
c2 = −

c2
c0
c4
c0
= 2 2 ; c6 = − 2 = − 2 2 2 ;
2
4
24
6
246
c0
c0
n
n
= (−1) = 2 2
= (−1) n
·
2 4 . . . (2n)2
2 (n!)2

c0
;
22

c2n

(n + 2)2 cn+2 + cn = 0.
 " - c0 
c2 = −



 

      

   
 

 

        


x2
x4
x6
y(x) = c0 1 − 2 + 4
− 6
+...
2
2
2 (2!)
2 (3!)2

+∞

x2n
x2n
. . . + (−1)n 2n
+
.
.
.
=
c
(−1)n 2n
·
0
2
2 (n!)
2 (n!)2
n=0



!   c0 = 1 " # $% y1(x) = J0(x) 
  &           ' 
   ( "  
        
 )  %* "+ & 
y1 (0) = 1, y1 (0) = 0
! *   ,  -   + "  
.  % x
/ $    % - % +   .  " 
( # 
  

      

0  . 1(   2  3   &.  " 

 " 3  +     .   & ( 
   (    (  (   ( 
0   (  
       + &. ". 
  (   & &.   4 +  .   
&. * "  ( # $  &   ( 
   
 " *     & ( # $
y(x)    $& " ( 
 yi   5 &.   .
  Dh : {xi}
, -5  &"  $& " ( yi  

##  $+ &.  (  -   .  +
     &. # $ .   &  
  & &  " &   , 6( $  +  
 #( (   ( # $ y(x)  & 
 ##  $   ( " x -  &+   
    6( "  %*  
y(x + Δx) = y(x) +
+

y (k) (ξ1 ) k
Δx ,
k!

y  (x) 2 y  (x) 3
y  (x)
Δx +
Δx +
Δx + · · · +
1!
2!
3!

7

 

       

y(x − Δx) = y(x) −

y  (x) 2 y  (x) 3
y  (x)
Δx +
Δx −
Δx + · · · +
1!
2!
3!

y (k) (ξ2 ) k
Δx ,
k!

+ (−1)k
ξ2
 ξ1
(x − Δx, x)





 
 

 

 

 

  

(x, x + Δx)



    

!

y(x + Δx) − y(x)
= y  (x) + O(Δx),
Δx


 

"

 

y(x) − y(x − Δx)
= y  (x) + O(Δx),
Δx



 # $   %

O(Δx)

  #




! "

 (

*

y  (x) =

y(x) − y(x − Δx)
+ O(Δx),
Δx

+,

(  
! +,   



 )  

y(x + Δx) − y(x)
+ O(Δx),
Δx

 $(    
.



y  (x) =

 

  


  %

*

 )

y  (x)

 )

*       

  #

 

!

   

     $(  

'



Δx

    $ 

2Δx

'   ! 

   &

  $ )
!    $

$ )     

y(x + Δx) − y(x − Δx)
= y  (x) + O((Δx)2)
2Δx


y  (x) =
   (


'

 !   !

 - *



    &#



  %





  

y(x + Δx) − y(x − Δx)
+ O((Δx)2 ),
2Δx
 (   ( y  (x)   $(

(Δx)2

+

++
   )





   

     y(x)    
     !  !       "
  (Δx)2


y(x + Δx) − 2y(x) + y(x − Δx)
= y  (x) + O((Δx)2 ),
(Δx)2

#$!

y(x + Δx) − 2y(x) + y(x − Δx)
+ O((Δx)2 ).
(Δx)2

#%!

y  (x) =

& '      

O((Δx)2 )

(   

)      *    "
  ++             
    ++      , "
    ( ) '       
   ++            
 
   



 



  



-   .          (   "
   /  ( +   ( 0 1,  "
    '    .     
   "
* &   * *      "
    2   (  1   1
     *   
3      40  ++  (   "
( 
y  = f (x, y), x0  x  xn ,
# !
y(x0 ) = y0 .
  (  x0  x  xn 1  1,     "
(    y = ϕ(x) */   (x0, y0)
3 1 (   
x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xn



 *     Δx = (xn − x0)/n #!
& Δx     0 (  1 )  
   40 # !      (x0, y0) 
 (    (  '++      y (x0) =
n

 

       



y

y

1

y0

(x n ;yn )
0

x0

x1

   
    
f (x0 , y0 )

 

x

xn

x2 x3

     

  

(x0 , y0 )



  

 

y − y0 = f (x0 , y0 )(x − x0 )




  

(x0 , x1 )



y = ϕ(x)

   

 

 



y1



y = y0 + f (x0 , y0 )(x − x0 ).

 

  

      !







   " #$



x1 

y1 = y0 + f (x0 , y0 ) · (x1 − x0 ),
 ! 



x1 − x0 = Δx!
y1 = y0 + f (x0 , y0 )Δx.

%

 



x1

y1

   

 &' ( !

)

 

y  (x1 ) = f (x1 , y1 ).
*  

y = ϕ(x)



(x1 , x2 )

  

 ,   



  " #$



  

  ! +,      

-- .

y − y1 = f (x1, y1 ) · (x − x1 )



k = y  (x1 ) = f (x1, y1 )






(x1 , y1 )

y = y1 + f (x1 , y1 ) · (x − x1 ).





   

   
 



   x = x2
 

y = ϕ(x)

 

y2 = y1 + f (x1 , y1 )(x2 − x1 )
 


   

  

   



y2 = y1 + f (x1, y1 )Δx.

      

y = ϕ(x)



x3 , x4 , . . . , xn "   
xi+1 # yi+1   xi+1    $  
      xi  #  

 

  #

 

x2 

 !

xi+1 = xi + Δx,

%&'"(&)

yi+1 = yi + f (xi, yi )Δx (i = 0, 1, 2, 3 . . . , n − 1).
*  

 

   !
$ 

   



x1 , x2 , x3 , . . . , xn

$   

 %  
 ) 

 %







  

" (+)" ,  

!  

   


  

   

 

  

    

  "

y
D(x3 ,y3 )

C(x2,y2)
A(x0 ,y0 )

B(x1 ,y1)

x
  
-







  

  

    

     !
  

   

! 


Δx"




 

" ((



    

     



!     

""  $    

 

!

   





!    %&'"(.)" /

0 

  

  

 






   !   

 

       



 

            
       ABCD...  
     
       
 !!  "    

# $$%
&  '         ( 
    !!  "    
    
)   *            +    
        
      
           
(x0 , xn )
yi 
&           
"  (Δx)2  , *        y = ϕ(x) 
 -        x = xi (i = 0, 1, 2, . . . , n)   
  
            
 .

y(xi + Δxi ) = y(xi ) + y  (xi )Δxi + O((Δxi )2 ).

#/0$1%

Δxi = xi+1 − xi = Δx = const.

,       

yi+1 = yi + f (xi, yi )Δx + O((Δx)2).

#/0$0%

2
 !     ! #/0$/%   ' 

    O((Δx)2 ) -        
       '     n·O((Δx)2 ) 3
    

L
xn − x0
=   
n
n
       

  n =

Δx =
  

L
,
Δx

L
· O((Δx)2) = L · O(Δx).
Δx
    '  
     
n · O((Δx2 )) =

 

 /04   
  (1, 2)   
         y = y − x      
   y(1) = 1          !
Δx = 0, 1


2

2

5 
 . 6        y = ϕ(x)   
  ! #/0$/% 5         "
      (        2(   
       " 
  ! " yi





i







xi












 

   

yi




  

 
  
 
 
  

f (xi, yi )

f (xi, yi )Δx

 
  
  
 
 
 

  
  











 
  
 



 
 
 

 

      
 ! "# ! $% !%  !% & Δx
 ' (  ) %! (   )( n  
($ %# * +'!   , %)!$ !,  ($# -  * . 
$! -(-- ) $ ($ ! /&0*
+!  ! /&0  ! - !#
( 1! (& -  * 2  ( 1& ($()%!! - 3# (- ( !  O((Δx)2 ) - 
& ( &!! -   1!$*
/)!  )  0 4 * 5  6! 3# 
&! xi  x  xi+1

yi+1 = yi + yi Δx + yi

Δx2
+ ...,
2

Δx = xi+1 − xi = const.

4

*5

& (($ ) - yi = y(xi ) yi+1 = y(xi+1 ), yi = y  (xi),
yi = y  (xi )*
7-, ( (#  )($ ! # 668
- ( 4 * 5 !  )9

y  = f (x, y), y  =

∂f
∂f
d
f (x, y) =
+ f (x, y) , . . .
dx
∂x
∂y

4

*

5

 

       



         
       
y  =

f (
x, y) − f (x, y)
d
f (x, y) =
,
dx
Δx

 !"#$%

    x, y  Δx &    
      " ' (   x = xi + γΔx

y = yi + δΔx.

)  *   *      !"+,%   -
   .     !"+,%  /
yi+1 = yi + [βf (xi, yi ) + αf (xi + γΔx, yi + δΔx)]Δx.
 !"#+%
0 α, β, γ, δ 1       
       !"#+%     
 !"+2%       "
3         !"#+%   -  4 Δx  
           &  --
 α     4 Δx/



∂f (xi, yi )
∂f (xi, yi )

Δx + . . .
f (xi + γΔx, yi + δΔx) = f (xi, yi ) + γ
∂x
∂y

           !"#+% 


yi+1 = yi + (α + β) f (xi, yi ) Δx + α γfx (xi , yi ) + δfy (xi , yi ) Δx2 + . . .
  



y

1/2[fx +f fy  ]

 !"##%
'    α, β, γ, δ         
       !"+,%" 5     !"+,%
 !"#6%  !"##%           -
7*     /
α + β = 1,

1
αγ = ,
2

1
αδ = f (xi, yi ).
2

 !"#8%

7     (     
    " 9     ( " ' 



 

 

     

 α      

β = 1 − α,




1
γ=
,



f (xi, yi )

⎩ δ=
,


     
      ! "#

   

    




Δx
Δx
, yi +
f (xi , yi ) Δx,
yi+1 = yi + (1 − α)f (xi, yi ) + αf xi +



$
! 0 < α  1 %&     α  &   $   
        '  (   )   *
+! , -       *   -  
    .  + -       ,   "
     ! "# $       ,  /
 ! ,/ O((Δx)2)         ! "#  
      
0  $    /      
   1 +
    &  !/ α = 1 
α = 12  %          &   ! 2


yi+1 = yi + f

31 !  

1
xi + Δx,
2


1
yi + Δx · f (xi, yi ) Δx.
2

     



 

y i+1
yi

xi

x i+1/2

     
%

x

x i+1

  α = 1

     /  /4  !  

   *  2

 

       

 




  

  

xi+ 1 = xi +
2

Δx
,
2



yi+ 1 = yi + f (xi, yi )
2

#

 $ %

2

2

  ).

      

   ).


yi+1/2

(

2





& 

'

$ #

* 

       .
 





  +

(α = 12 ) :



1
= yi + f (xi, yi ) + f xi + Δx, yi + Δx · f (xi , yi ) Δx.
2
        

yi+1






yi+1 = yi + yi+
1 · Δx

)*

Δx
(
2




yi+
1

  

,





= f xi+ 1 , yi+ 1 (

! "

   

    

   
2







-.+/0

$ 1*   + !2+

y i+1
2

yi

xi

x i+1

     
 "

3

1

#  

 

x

  α = 1/2
1



  $  '

y i+1 = yi + f (xi, yi )Δx (


xi+1 = xi + Δx

ȳi+1

      +

  )

       

= f (xi+1, y i+1 ) (

  !)

'  







 


     

       

yi + ȳi+1
2


yi+1/2
=

 


 

       

 

 

! " "  

( "

 "

" "  .



# 

 

  )
 

yi+1





 !#$" %

 " &

+

!

) &*""

" "   ,

(

"  "



$" 



!  "#- "  

 ,  #!# 

 # # ,  "#

" '

   

 " 

" "!   



/ " 

01(2

1
yi+1 = yi + (k1 + 2k2 + 2k3 + k4 )Δx,
6

Δx 
Δx
, yi + k1
,

k1 = f (xi, yi ), k2 = f xi +
2
2


Δx 
Δx
, yi + k2
, k4 = f xi + Δx, yi + k3 Δx .
k3 = f x i +
2
2
1



+

  #$  "  
  ,

 " "
#



"

 -"!

1



!

 #!


,

 " #!


 "# !

3   #   

" #  "! - " 4 ,&





O((Δx)4 )

  

 " ,5

! ) &*""

#!

$"

# "
  

 #+!  "&

 "#2
6 

$" #! $ " "7

6 

#$"  #!

 !

  

/ "   

 

yi+1

 - 

#!

 "  

   "#   #!


 &

 7
6 


 $"

 -"



!

"  " /  3  ,! " 

# , "

"



 -"

#

+ 

1  " 
!

" !

 -"! 1

p

#!

   -"  3  " "
  #"

 "

  

    #" 

 



 -"

h/2



"    

3



h,

$" #" &
"

3  #$"  

[y]n − u(h/2) ≈ u(h) − u(h/2) ·


+

#   #" 

 

6  +! 
 

 / 8" 
 " 

1
,
2p − 1


 2

h/2

 

       



             
        
    

y  = xy
, 0  x  1,
2
y(0) = 1.

           ! "   # $ 
           ! ! !       " !%
!   &' $   y = Cex /4 ("  '
 ! y(0) = 1       "   y = ex /4 .
) $   !    !          %
"
   *   ' Δx = 0, 1   "     %
"
  ! "             + '
"    " ! *
, - .

/

0
1  1  1  1  4 
2*   '%  '%  '%  
3
3
3
-%* % -%* % %* % y = ex /4
! ! !
2

2

2

i

xi

5
,
.

/

0

6
,5

55
5,
55.
5
5/
5
50
5
56
,5

yi

,5555
,5555
,55/5
,5,/,
,5.5.
,5/56
,500,,56/
,,.
,,6,-06

α=1
yi

α = 0, 5
yi

,5555
,55-/
,5,55
,5--0
,550
,5
,565
,,.5,
,,0.,--,
,-.

,5555
,55-/
,5,55
,5--0
,55
,5/
,56,,.5.
,,0./
,--
,-.6

yi

,5555
,55-/
,5,55
,5--0
,55
,5/
,56,,.5.
,,0./
,--/
,-,

yi

,5555
,55-/
,5,55
,5--0
,55
,5/
,56,,.5.
,,0./
,--
,-5





     

  
        
       

        
               
         
! "  
      #   $
   %    
              x = x0
&  '(

dy


= ϕ(x, y, z),



dx

⎨ dz
= ψ(x, y, z),
dx




y |x=x0 = y0 ,



z |x=x0 = z0 .

& !)*'

+  ,- %  


 
 

 
y
ϕ
y |x=x0
y

, y0 = 0 .
y =
, f (x, y) =
, y |x=x0 =
z0
z |x=x0
z
ψ

& !./'

0           

⎨ dy
= f(x, y),
dx

y |x=x0 = y0 ,

& !."'

     ,       & !12'    $
    $
+      #  & !1 '      $
 ,      & !."'      
  $
xi+1 = xi + h,
& !.1'
yi+1 = yi + hf(xi , yi ),

i = 0, 1, . . . , n − 1.

 h = Δx
3           % $
         4   

 

       

     

  

⎨ y  = ψ(x, y, y  ),
y(x0 ) = y0 ,
⎩ y  (x ) = y 
0
0





              

y  = z ≡ ϕ(x, y, z),



z  = ψ(x, y, z),
y(x0 ) = y0 ,


⎩ z(x ) = z ≡ y  .
0
0
0


y = z!



"              

ϕ(x, y, z) ≡ z 

#     
 $     % $     && '
 ( )   
 *           '
    $    
  
+        &  ,-     '
  
 $     . 

⎨ xi+1 = xi + h,
yi+1 = yi + hϕ(xi , yi , zi ),

zi+1 = zi + hψ(xi , yi , zi ).

/

     

,
")  0 '% 
           &&  ( ) '
  -    
 *  -     &   
y f (x, y)  y f(x, y)      
1    ) .  ) &&  ( )  
         )  0 '%   2
  '
 

xi+1 = xi + h,
1
yi+1 = yi + h (k1 + 2k2 + 2k3 + k4 ),
6
1
zi+1 = zi + h (q1 + 2q2 + 2q3 + q4 ),
6







     



k1 = ϕ(xi, yi , zi ), q1 = ψ(xi , yi , zi ),


1
1
1
k2 = ϕ xi + h, yi + hk1 , zi + hq1 ,
2
2
2


1
1
1
q2 = ψ xi + h, yi + hk1 , zi + hq1 ,
2
2
2


1
1
1
k3 = ϕ xi + h, yi + hk2 , zi + hq2,
2
2
2


1
1
1
q3 = ψ xi + h, yi + hk2 , zi + hq2 ,
2
2
2
k4 = ϕ(xi + h, yi + hk3 , zi + hq3 ),



q4 = ψ(xi + h, yi + hk3 , zi + hq3 ) .
            
     ! "    #$     

   $    %$  &'(

  
 

       
    

)# ! * +,- y = f (x) +
 ** ,     -

y  + p(x)y  + q(x)y = F (x)
  







αa y  (a) + βa y(a) = γa ,
αb y  (b) + βb y(b) = γb .

 + [a, b] 


.

/     * +, 0    
      .     +  * +,
y(x) "   ** ,   + [a, b] 1  
  . -     2   + 
# ,! +**,  αa , αb , βa  βb "     
    ! + -   
+ * +            
    .  3   αa = αb = 0  βa = βb = 1
 
     +       + !
* +,   , +4 y(a) = γa , y(b) = γb  '   
αa = αb = 1  βa = βb = 0        + 

 

       

  

  

y  (a) = γa , y  (b) = γb 

 

 

    



   



     !  "  # $   %
    $               
p(x), q(x)  F (x) &  ' ($#    )  
 #     $       
* #    ( +      
  
*              [a, b] %
     x0 = a, x1 , x2 , ..., xn = b *  
 (
      #   (    $     ,%

b−a
 - 
i% 
n
      xi = a + i · h, i = 0, 1, 2, ..., n

     # 

  h =

  
*      (  (  $   
  )               .%
 F (xi ) (  (  $ Fi ; p(xi ) / pi  

  $ 
$    !
 "  ,       [a, b]   )  ( 
   ( 
  / "  , 
%
      "       ,%
   ')     n + 1    ) 
      !
%    %
  ()   $         y(x)
) '  $    !  '
%   )    ) 00  0  %
$      1! 02   )
 ! 3      $ + )   4 %
 00  0     
   
1! 02 /    
  & + ) )  %
 , $ x = xi Δx = h    y(x) = y(xi ) = yi y(x + Δx) =
= y(xi +h) = y(xi+1 ) = yi+1  y(x−Δx) = y(xi −h) = y(xi−1 ) = yi−1  5 
(  $     ') %   ) %
)
      " ) %   )   %
 )    !  ,      %
   (n + 1)%     (n + 1)%     





   

  
    y0 , y1 , ..., yn

y1 − y0

αa
+βa y0 = γa ,


h

⎨ y − 2y + y
y

y
i+1
i
i−1
i+1
i−1
+qi yi = Fi , (i = 1, 2, ..., n − 1),
+pi

h2
2h


y

y

n
n−1

+βb yn = γb .
αb
h








   




!   "  



βa h − αa y0 +αa y1
= γa h,
 2

2 − pi h yi−1 + 2h qi − 4 yi + 2 + pi h yi+1 = 2h2 Fi ,








−αb yn−1

$

(i = 1, 2, ..., n − 1),



+ βb h + αb yn = γb h.

  % &"

'

b0 = βa h − αa , c0 = αa ,

!  

#

f0 = γa h,

2

ai = 2 − pi h, bi = 2h qi − 4, ci = 2 + pi h, fi = 2h2 Fi ,
an = −αb ,

i = 1, 2, ..., n − 1,
fn = γb h,

bn = βb h + αb ,

(
" i    #  n − 1 ) * (   # ' 
 %    






a1 y0




⎨ a2 y1
⎪ ···




an−1 yn−2




⎩ an yn−1

b0 y0

+c0 y1

= f0 ,

+b1 y1

+c1 y2

= f1 ,

+b2 y2

+c2 y3

= f2 ,

···
···
··· ,
+bn−1 yn−1 +cn−1 yn = fn−1 ,
+bn yn

+

= fn .

,   '  & %-  %   .- %
" 23 n3       /     %     +
    -   
0 "  % 1 2 3    3  -  3   -

 

       



 
    (b0 , b1 , · · · , bn )    

        
      
     (a0 , a1 , · · · , an ) 
! (c0 , c1 , · · · , cn )
  
      " #
   
   
   " $ #  #  %&'  
 (
 ()     
  &     * 
 (  +
" #," )  
 
 - )  
#  .' / (0   1& 2
) )
345    *  
'  + )
   &6 7)   ) 
*
 *  +  

*)
    ( )+  #  
!  )   1 
 *   # ) +
* 
    # (*  )
   & 
# ) ) ) 
 +    +    
  )
*) [a, b] 8#  9  #
) %    
 *     ) "+ / 
  ) * +,  # (
*   *    (  
  
 # )  * 00) 
' ) * ( + !         
    +  # (! !
) h $   * +
h   (   
    "  #  "
  |bi | > |ai | + |ci | $       !  
"  #    *) [a, b] 0) p(x), q(x)  F (x)
6  !    +
"   (
" )  
 
" :  ) (
*(
     * + *    ##
 + yi
 
    +* # " * + yi+1
;

yi = Li yi+1 + Ki ,

i = 1, 2, 3, . . . , n − 1.

" ?@A      4-:*;- =BA  C 
  $             D:0 Y := Bulstoer(y0, a, b, N, D)   0  "  10  
        ,      
".!      ? 0       
F 0G 
H . .!  "%
y0    .! "   
   a
a     $
b    $
N   "$   " [a, b]







    

         

F 
            
         
        
Y
             
     
      
!    ! "          Y
#      
    
       
$    % 
  &'()*+  ,'-+-./  
 !    ! 01234
ex · y 2
y := 1 Y := rkf ixed(y, 0, 1, 5, f )
f (x, y) :=
2


0 0.2
0.4
0.6
0.8
1
Y =
1 1.124 1.326 1.698 2.581 6.857
Y :=Rkadapt(y, 0, 1, 5, f )

0 0.2
0.4
0.6
0.8
1
Y =
1 1.124 1.326 1.698 2.582 7.097
5   %   
  &'()*+  ,'-+-./  
2
= 7, 09929356  
  %   01264 y(1) =
3−e
  
   7    %   

   8-/9:-+  7   
 
    !  
  %  
 5 
   %! ;7    
  # %  #      *&/?@A=:/BC=
D      7 
   
   !      !      
 E#7 F  
  %  
G4 Y := stif f b(y0, a, b, N, F, J) ! #7  
D ! H 
34 Y := stif f r(y0, a, b, N, F, J) ! #7  
 I  J     
   
  J(t, y)      0  4  
   x 0   4 J ! #7
             #  
%
12G33 
 $ 8-)BK- 
  &'  
  !    !   
  %  
          % 

               

dy1


= f1 (x, y1 , y2 , · · · , yn ),


dx




⎨ dy2 = f (x, y , y , · · · , y ),
2
1 2
n
dx
⎪ ························







⎩ dyn = fn (x, y1 , y2 , · · · , yn ).
dx
 



    

y1 (x0 ) = y01 , y2 (x0 ) = y02 , · · · , y1 (x0 ) = y0n .
       
"#$%
  



 &#

"#$%(

*#&+)#

 
$  

 



$$

$



x = x0 '

'

 

# ) '  

  -!  "#$%



.

       ' &  

  #(    (   
+  $
"#$% 

'  (!



  !

 $# &  



$$

 $

   

'  (!#(  

,& $

 

 '  
/ 



"#$%'

x = x0 '





&# $

$  



 & 

xend

  !  "#$%

$$

"#$%' 

  &

  

 +

   $$

&#

 )

/ 


step

0

   +

' !,    

    1
23  !" 

 

#$%&23

  

23'(!)** " +(!*

,)" * * ,-!!.32

  
23/0,0* 1)"23 4353 ,6+ 7 4 8,-!! 9 5:

 * (9( " 32

    ! ! ! "! ! ! #$
23;*! !+(" *0* 6!(< (9( " 4) 0+ R = 0
a

∂u
∂u
+b
= 0.
∂t
∂x

"#$,$&

             



       
      V = ab ¿!

b
x− t .
a



" #$%
&  " #$% ' '   (
)    " * % !
+,-,., /         ) (
!
u(0, x) = ϕ0 (x),
−∞ < x < +∞.
" #*%
+,-,., //
      )
!
u(0, x) = ϕ0 (x),
0  x  +∞;
" ##%
 ) 
u=f

" #0%
  0# 1     2   34
 5  t > 0    
" * %  )5 5 34 u   x 6 
 " 0# 7%   34   
(t > 0, x > 0)     " * % (
  )    x  )   t
&)   5 ') 5
x − (b/a)t = C = 89:;< 2    " #$%  5(
  34 u 5 )  ) (
  u   x   t =   )
) )   [x0, x1]  ) ) (
)  5 [0, x1]  [0, t0]   5  
D     >   2   [x0 , x1 ]
      [0, x1]  [0, t0] 34 ϕ(x) = 0
 ψ(t) = 0    D    34 u ' 
 $ ) 5 x − (b/a)t = x0  ' 5
u(t, 0) = f0 (x),



t > 0.


   f x − ab t      
b
f (x)        t         
a
  ab 
¿





     

t

t

D

D

t0
x

x
x0

x1


x1

0





!"


     
x − (b/a)t = x1     

 x − (b/a)t = −(b/a)t0 
  



"##$





  

(

  

   

 ' 

















! 








b
x− t ,
a

x − (b/a)t =
u

#

/



 ! 

%&



 # $

 

  
$



 

x − (b/a)t = x1 

∂u
∂u
+b
= c,
∂t
∂x

 

   

u − (c/a)t

/

 

  

c
u= t+f
a






a
  !

#



)*+,-  .  ! 

! 
! 


  

  
( 

  !   
 $   0

 

 


!

               

          
    



              
      



  

      !    " #   
    !    "$

 %& z = y ln(x2 − y2);
 %' u = arctg xy ;

z
1 ∂z 1 ∂z
+
= 2º
x ∂x y ∂y
y
∂ 2u ∂ 2u
+
= 0º
∂x2 ∂y 2
∂ 2u
∂ 2u
=
º
∂y 2
∂x2

 %( u = cos(x − y) + ln(x + y);
 %) u = arcsin(x + ay);

∂u
∂u
=a .
∂y
∂x
2

∂ u
+ 2 = 0.
 %* u = et sin x; ∂u
∂t
∂x
 % u = cos(xy) + y2; uxx + uy + y2u = y4.




    #  z = z(x, y)    ! 
  "  + ##  +    !   
+  "
 %, z2x−yz+x2 = 0; zxy (2xz−y)+2xzxzy +2zzy = zx.


 %

z x
− = 1;
y z

      

 %%

2

∂ u
x
= .
∂x2
y

 %&-

∂ 3u
= 1.
∂x2 ∂y

∂u
= x + y.
 %&& y ∂x













zxy − zx + zy = 1.

 

+  +  













∂ 2u
x2
=
.
∂x∂y
1 + y2







∂ 2u
y
=
.
∂x∂y
1 + y2







∂ 2z
y
=√
.
∂x∂y
1 − x2







∂ 3V
= xzexy .
∂x∂y∂z

 



   

 

                 
              
    ! !
     "
  
       

 



   

#!$     %% & ' !      
      
  
  (  
     ) %(   ' ! *%% &  !
P (x, y, z)( Q(x, y, z)( R(x, y, z)  $   '  + ' ! 
! # , $ ,)
         
 * !     )'+      (       
%% & '         
   
-            
  
  .       
 ,)    
    + / 01
$        ( $ 
  
         
*%% &  
/ 231
4     $
   ! * 
!( , ' D  
      t( x( 
  )   
%% & '    (     
 
 ,  
 
$ 
(   
 !   5  ' !       6
,  (    % &
u(  )     +) !

 



 



 t x   
       
    tn , xm           
    
      t    ! 
   
          x  
   
"            #  
     #  
         $ 
%         "       #
      $            
   
      #    &  
      
 
 
       #
       #
 # $     
     #       #   
 '    !   
     $  

 
()    #        *+,-./ 
  
$  D   
$
    
' )     # *    0- 1/
  )   
       *    0- 2/ '  %   #  
  $ #        D   

 )    #          
%    *  / 3   
#  )#   #
    
$         #
      (    %
     #
!        
    
$
  #        $    )   x $
h
)   t $    τ 
   $  
  
  
$     

   
4 tn = n · τ xm = m · h n = 0, 1, 2, . . . 5
m = 0, ±1, ±2, . . . 
6   
u(t, x)
     (n, m) $   
u(tn , xm ) = u(nτ, mh) = unm 
7    
         $ 
$ #
D
       n m            
n = 0 n = N m = 0 m = M  8  # 
    
   $      n  m     3 
  #  τ = τ (h)  #       τ → 0  h → 0





t

t

t

n

n=N

 

n
2
1
n=0
-3 -2 -1 m=0 1 2

x
m

3
2
1
n=0
m=0

n=n

x
m

1 2 3



1
n=0
m=0



x
1

m=m m=M


   


  τ = rh  r      
           
               h !
 " Dh 
#       $$  %&
' (  u(t, x) !
 ' $ %' u   (!
"  Dh   '
h
     & $$  %     !
 & ) (
       % !
" )           *+,- "!
      .!         
 %'  "  $     /   
 %  "  "      !
  $ % &    &
0  %  " !   (n, m)  (
      $ %   " "   !
   1   % (     
2     &   "   '  (&
  ('3  (n, m)   -
4        &    '3  % !
 "  (n, m)




∂u
∂t
∂u
∂t

n

=

n
un+1
m − um
+ O(τ ),
τ

56.

=

unm − un−1
m
+ O(τ ),
τ

56,

m

n
m

 



 


h
(n+1,m-1)

(n+1,m)

n+1

(n+1,m+1)

τ
(n,m-1)

(n,m)

(n,m+1)

(n-1,m-1)

(n-1,m)

(n-1,m+1)

m-1

m

  


∂u
∂t







n

∂u
∂x

∂u
∂x

∂u
∂x

n-1

m+1

 (tn , xm 

n−1
un+1
m − um
+ O(τ 2 ),




=

unm+1 − unm
+ O(h),
h



=

unm − unm−1
+ O(h),
h



unm+1 − unm−1
+ O(h2 ),
2h

 

=
m

n
m

n
m

n
=
m

n

            

∂u(t, x)
u(t + τ, x) − u(t, x)
= lim
;
τ
→0
∂t
τ
$  %&'

u(t, x + h) − u(t, x)
∂u(t, x)
= lim
.
h→0
∂x
h

   (   ()

(*    +  %(&
   &( .( /

!"#

) &

, )  %&'  &   ( -





1
1!

un+1
= unm +
m
un−1
m

=

unm

1

1!

unm+1 = unm +
unm−1 = unm −




 !" #
+






1
1!
1
1!



∂u
∂t
∂u
∂t



n
τ+
m

n

1
τ+
2!
m

∂u
∂x



1
2!

∂u
∂x

n
h+
m

n
h+
m

1
2!
1
2!




∂ 2u
∂t2
∂ 2u
∂t2




n

1
3!

τ2 +
m



n

∂ 2u
∂x2
∂ 2u
∂x2

1
τ −
3!
m



2

n
h2 +
m

n
h2 −
m

1
3!
1
3!

∂ 3u
∂t3
∂ 3u
∂t3




 

n
τ 3 + O(τ 4 ),
m

n

∂ 3u
∂x3

τ 3 + O(τ 4 ),
m

n
h3 + O(h4 ),
m

n

∂ 3u
∂x3

h3 + O(h4 ).
m



          

 

 $%   &' () *      


*     ,

 

!#  ( -

 ./  )  '&          

  

0 
' 

 

/  
/   &   +

 

    

     

      +
 



     

    

$ 

        

2   1 (

 !  %

 *       (   
" 1  

  +

   



  -

  
  . /     (       

   .          *

  &  ++ (
,     '& '  

  

'    

'     

' 

  


 



 



 

             
                
 !
"! #   $ % "!  % &!'

n
un − unm
un+1

m − um

+ b m+1
= C,

⎨ a
τ
h



⎩ u0m = ϕ0 (mh),

m = 0, ±1, ±2, . . . ,
n = 0, 1, 2, . . .

% (!

m = 0, ±1, ±2, . . .

)*   +           ,-."/ 
    0   ,-/ 1 +      2
   % (!     u        3  0
     +     $ 4  +   '
un+1
= unm −
m

bτ n

(u
,
− unm ) +
ah m+1
a

m = 0, ±1, ±2, . . . ;
n = 0, 1, 2, . . . .

% !

5     6 2       u   
 3   u0m = ϕ0(xm) 7 $        
      6 $ 4     0  
 89  
:   0           0 
89 $$ 4  0      ; 
          *  + *  ,  
/0 ,  /0 ,    /   2   8 *
         + *  ,  /0
,  /0 ,    /         t 
*     9<         *  !'
, 6 /0 , 6 /  
2 4     % (!      
(n, m)0 (n, m + 1)0 (n + 1, m)0  *+
   =0>0  
   0    6   6  6 60 ?
)  *+,0,. /   

!   *+001.  *+005.         
 #  3
a

1 − e−iωh
λ−1
+b
= 0,
τ
h

             



λ

λ

λ

0

0
0

1

b
1+ a r

b
1+ a r



1



1

1-r



  
     
          
    

 τ = rh



b
λ = 1 − (r + re−iωh ).

a
     λ       
  r  !  " #
  ω     
λ = 1 − (b/a)r $"   "  % "&  '
  (b/a)r  1 τ  (a/b)h   ()*   "&   
(b/a)r > 1 τ > (a/b)h   ()+

,   - ..  "     "
 r = (τ /h) > (a/b) ,  "
 "  /  -& &  "  012
   .        x
3 "" % " (   -     "
 /  -&#

r = (τ /h)  (a/b)    "

eiωh − e−iωh
λ−1
+b
= 0,
τ
2h
iωh
−iωh
   e − e
= 2i sin ωh ! ((    (((
i
λ−1
+ b sin ωh = 0.
a
τ
h
a

4 /  

" 

λ=1−i

τb
sin ωh.
ha



3  τ /h) = r     "& λ "#


|λ| =

1 + r2

b2
sin2 ωh > 1.
a2

(



 



   

           
   r      !  "  "#
(τ /h) = r = const  !   $%&   
(τ /h)  (a/b) '     h → 0 "#    ( 
)   h2   τ = rh2     
 λ = 0  **  ωh = π/2   +


|λ|ωh=π/2 =



1+

τb
ha



2

=

1+

b2
rb2


1
+
τ.
a2
2a2

*,

- *,  1 + (b2/a2)rτ  (  "    (.
 / 0 )       τ  1( *,     
  2    (     
 "  "#+
τ
h2

= r.

3     ! .4   τ /h = r   
( "#    τ     "#     h
-  4  /     !    !
   (    "#        
! ! "#  #    "  (
5            
 * 6     
5     2  ,  7   
       / 
a

'  τ = rh

λ(eiωh − 1)
λ−1
+b
= 0.
τ
h
λ=

1
.
b
b
1 − r + reiωh
a
a

5  !(   
|λ| = 

b
1 + 4r
a



1

.

b
2 ωh
r − 1 sin
a
2

5 (b/a)r < 1  τ < (a/b)h         
(b/a)r  1  τ  (a/b)h 6    8 .    (
  $%&  / 

             



 
 
 
      

  !  " #
a

$

λ(1 − e−iωh )
λ−1
+b
= 0.
τ
h
λ=

1
.
b
b
1 + r − re−iωh
a
a

 %!

 #& '  
1

|λ| = 

ωh
b
1 + 2r sin2
a
2

2
+

r2

b2
sin2 ωh
a2

 1.

 &# r
()      & *+,
- #.'   / .  
  )    0012
  .  # 3 .3
  4 &" .  '   2
   )   0.
5 . '  6 )  .2
1'   &  ." 7 4  '
 #3   7 '  2
& .   001 83 # 3.2
&  . 91 .6 001:'
)   001  
.&  .  2# .3 02
 ' 6" / # 83  2
3 & 3    0012
' &" .  / # 5
 .    '  6 ) &
. #. '   . *7
4 .3   .  "3&  2
.) 91 6  6:'  .&2
  &";  ) #  7 #  
#  6' #' #  7 #  









   

        

 

              
              
   
 !  "          " 
            "
 !# #    !      
 "            
   $  "  !    %  
   #      #    
  &    "  #    
      #   "  !#
                
         "  #" 
#" !  # ! #  #   '
  # #  #

        
      
  
       
     

(     #      
   !    #     
   "  '   !  
#  !   # #      h"   
   !)  *      # 
 !  # # +,- *    +,- . 
 !#    
   "  %.   
!  *        ! # %!
  
   
     ! #  
 
"  %.   '     
%.  %   %   
    
   / 012345" 678982:" ;2352  ?    
% ?   @
=AB  C 
? !? D ?  'E5715F-+ *-58:533)
!?  G:51F+F-+ H+:+F265 E+91F59 6I+35
 J26.:2-./K:5;- 0  
  qi < 0 +  

= q1 (t),
x=0

−k

 $   % 
  %    
(         )

*
 

,  
-.
/ α + $ 
,  % 0 
% 
         "0   )1 ucp + !
  "0   )
2%)  %   %) / )   
       % )  )   )
    )       &
∂u
= 0,
u|x=l = 0.
--
∂x x=0
3 ,  /   %4  5  / 
       
α(u − u  )|x=0 = q1 (t),

α(u − u  )|x=l = q2 (t),





  

             
               !"  #
$   %&"
'     ( )*("  ))   #
   )    )  $ u = u(x, y, t)  )*  #
 " σ+ ,  ( * ( L - $   .   
  * ( L
 / ( )  ("  ))  ,#
 $      )  S + ,   (  V 
0 )   u        t+   )   
)  $     +  ∂u/∂t = 0+    %!"
) 

∂ 2u ∂ 2u ∂ 2u
Δu =
+
+
= 0.
% "
∂x2 ∂y 2 ∂z 2
1   % " $  + ** 2   + 
+   * +  
 .     + $  #
    
 , )     ,  *(  *  
* , $  + * $ )     ,
  
u(x, y, z) S = ψ(x, y, z),
% %"
, ψ(x, y, z) 3   * + )   )    #
)  $  ,  S    , 
4 2           5) % "+   #
 ,    * u ,    % %"+
$     
6  +      %!" ) $   * $  ,  #
= DΔc, ,
  * ) $+   +     ∂c
∂t
c = c(x, y, z) 3 *  * +   *   (  #
    ,   + D 3 *.       $
, $   )$    $    
   ))   6   *  *   #
         *(   *      7  +
 $(  2       7  

 

      



  

         
    
    
a0 
+
(an cos nx + bn sin nx)
2
n=1
+∞

! "#

    
$ a0 , a1, b1, · · · , an, bn, · · · %  &  

'   ! "# &      
  2π
 ()*+   ,  ,   2π - 
n
 .         [−π, π].     
+ + +  (−∞, +∞). / 
a0 
+
(an cos nx + bn sin nx)
2
n=1
+∞

f (x) =

! 0#

   +    2π 1      
.      )     ,  
1
(cos(x − y) − cos(x + y)) ;
2
1
cos x cos y = (cos(x − y) + cos(x + y)) ;
2
1
sin x cos y = (sin(x − y) + sin(x + y)) ;
2
1
1
sin2 x = (1 − cos 2x); cos2 x = (1 + cos 2x);
2
2
1
sin x cos x = sin 2x.
2
sin x sin y =

! 2#

3      ! 2#.    &*  
 4 n  k 5    n = k.   &  
&* 6









cos nx cos kx dx = 0,

  

sin nx sin kx dx = 0,

−π


−π




−π

−π

−π

sin nx cos kx dx = 0,

sin nx dx = 0,

cos nx dx = 0,










n=k



cos2 kx dx = π,

−π

−π

 


sin2 kx dx = π,

sin kx cos kx dx = 0.

−π

      

   $

[−π, π] %! 

' (  !
! 



 "#

   &   ! 

 ")   

   *  !

  !



  

    !  " 

 * #

−π



π

 







+∞

a0
⎝an cos nx dx + bn sin nx dx⎠ .
dx +
f (x) dx =
2
n=1

−π

−π

−π

+ $   

a0 =

 

1 π
f (x) dx.
π −π

,

k∈N

 !-

−π

π a0
dx = a0 π

−π 2

!-   !

  *    !

 

    

cos kx

*

 .



a0 π
f (x) cos kx dx =
cos kx dx+
2 −π
−π


π
+∞



+
an cos nx cos kx dx + bn sin nx cos kx dx .
−π

n=1

−π

/*    

  ! ! 

  !  *  * 
 *
* 

ak



cos2 kx dx = ak π.

n=k

% $    !   1#

−π

 !  *"  


f (x) cos kx dx = ak π.
−π

* !#

!  - 0 !

 

      





 ak = π1 f (x) cos kx dx.
−π

          sin kx 
            !  −π  π  "#
$   % &       '$$ (   bk )
1
bk =
π


f (x) sin kx dx.
−π

*  #      $(  f (x)     2π
   &  " ! +   ,"   #
 [−π, π]   '$$ (  ,"   -  $  )
1 π
1 π
f (x) dx, an =
f (x) cos nx dx,
π −π
π −π
1 π
f (x) sin nx dx.
bn =
π −π

a0 =

.

,  .         ," ! 
   "  /  #  # "       
!     ," 0          !   
  $      &   
 1  f (x)     
     [a, b]             
              
   f (x)      
     [a, b] !
"#   $       [a, b]     %  
       I &
'#        [a, b]
*" $     0  !  -+-   
  #    $( f (x)   ,"
   (  $    f (x)  $ 
 2π     )        * 
     
 )+     
       (      $  
   f (x)   S(x)    )   





  

     x0          
          x → x0 
   
S(x0 ) =


1
lim f (x) + lim f (x) .
x→x0 +
2 x→x0−



         x ∈ (−π, π]  
! f (x) = x
 
 "!  




   

 

      

 # $  #%

 

!

&

 

  *

(−π, π]! '" '%
  (& )*

 x'"&
2π ! )    Int(x) " +
f1 (x) = f x − Int


  * & )'
   

f1 (x)

' )!  
- '

  ," "'  '    '  '

 &*     '   $

$   

 '" .!



  ' ,

 ' / 

!

(−π, π]

" (& 

1 π
1 x2 π
x dx =
= 0;
π −π
π 2 −π

π
1 π
1 π
1
x sin nx −
an =
x cos nx dx =
xd sin nx =
π −π
πn −π

−π

π

1
− −πsin nx dx =
cos nx
=
πn2
 −π
1 
cos nπ − cos(−nπ) = 0;
=
πn2 π

π
1 
1 π
1
bn =
x cos nx −
x sin nx dx = −
xd cos nx = −
π −π
πn

−π
−π

π 

1
1 
=
− cos nx dx = −
π cos nπ + π cos(−nπ) − sin nx
πn
n
−π
−π
n
2
2(−1)
= − cos nπ = −
.
n
n
a0 =

0 ' ,#'!
1  & 



a0 = a1 = · · · = an = · · · = 0; bn =

2(−1)n−1
.
n

(−1)n−1
sin x sin 2x sin 3x

+
− ··· +
sin nx + . . .
f1 (x) = 2
1
2
3
n


.

 

      

   





 
f1 (x) = 2

+∞

(−1)n−1 sin nx

n

n=1

  

    

.

 

              
                
    ! "    ϕ(x)   
 ϕ(−x) = ϕ(x)  


ϕ(x) dx =

−π


0




ϕ(x) dx + ϕ(x) dx = ϕ(−x) dx + ϕ(x) dx =

−π

0

0



= ϕ(x) dx + ϕ(x) dx = 2 ϕ(x) dx.
0

0

0

#$%!&'(
 ϕ(−x) = −ϕ(x)! + 

) *   


ϕ(x) dx =

−π

0




ϕ(x) dx + ϕ(x) dx = ϕ(−x) dx + ϕ(x) dx =

−π

0

0



= − ϕ(x) dx + ϕ(x) dx = 0.
0

0

0

0

#$%!&&(
,     -.       
f (x)! /      *    
 
  a0  ak         bk 0  
! +            
a0 = 0,

1*

an = 0,

2
bn =
π


f (x) sin nx dx.

#$%!&%(

0

         
f (x) =

) *   

+∞

n=1

bn sin nx.



#$%!&2(





2
a0 =
π



2
an =
π

f (x)dx,
0





 

  


f (x) cos nxdx,



bn = 0.

0

   

a0 
+
an cos nx.
2
n=1
+∞

f (x) =


      

& $  "



$$ 

! 





 ! 

"#  $" %

"# '  "



" $%

$ 
($

"# $  ! )    ) $$ "

y1 = y + c, x1 = x





  

  

a0 
+
an sin nx.
2
n=1
+∞

f (x) =
* +

a0 =

#&  & $,$ 

2
π


f (x)dx,
0

 
 , ,

f

 $",

π
z = x
l

 2π 
x ∈ [−π, π]3

$" ) $ 

 " +

2
π

 


f (x) sin nxdx,



(!  1

0

"#,

f (x)

"#

$ 

l
f ( z)
π

  1  

  2l


2l

/ 

0  

 2 

+∞
1  a

0
z =
+
(an cos nz + bn sin nz) ,
π
2
n=1

#&  ,  3

1 π  l 
1 π  l 
z dz,
an =
f
f z cos nzdz,
π −π
π
π −π
π
1 π  l 
f z cos nzdz.
bn =
π −π
π
a0 =

-

an = 0.

        

. $$  

"

bn =



 %
%

 

      



         x = πl z, z = x πl ,
π
dz = dx  z = −π, x = −l  z = π, z = l
l
        f (x)
   2l
 nπ 
1 l 
1 l
x dx,
f x)dx,
an =
f (x) cos
l −l
l −l
l


l
1

x dx.
f (x) sin
bn =
l −l
l

!"#$%

+∞

a0  

nπ 
an cos
+
x + bn sin
.
f x =
2
l
l
n=1

!""'%

a0 =

&     

(     f (x)   
    
a0 = an = 0;

bn =

2
l

l
f (x) sin
0

2l )

 nπ 
x dx.
l

!""*%

+       
+∞ 
  
nπ 
bn sin
.
f x =
l
n=1

!""#%

( ,    f (x)   
    
a0 =

2
l

l
f (x)dx,
0

an =

2
l

l
f (x) cos
0


x dx,
l

2l

)

bn = 0.

!"""%

+       
+∞

a0  
nπ 
an cos
+
x .
f x =
2
l
n=1

!""-%

 

         



 
   
     
 
          
         
          
        
 
 





  

  
          
     l        
        !"#$%   & 
'    ()$         x = 0
 x = l *  + 
∂u
∂ 2u
= a2 2 ,
∂t
∂x

x ∈ [0, l],

t > 0,

u(x, t)|t=0 = ϕ(x).

,   '  
  '   .

    - '% 

u(x, t) = X(x)T (t).

*  +   

  !"#$.

 /"$

∂u
∂ 2u
= X(x) · T  (t),
= X  (x) · T (t) ⇒ X(x)T  (t) = a2 X  (x)T (t),
2
∂t
∂x
T  (t)
X  (x)
=
 . 2

a T (t)
X(x)
*  '  '         x%
   0  t%      x%   t %  ' % +

    .

T  (t)
X  (x)
=
= C.
a2 T (t)
X(x)

1    

 /!$

.


T (t) − a2 CT (t) = 0,
X  (x) − CX(x) = 0.

 /($







      

        T (t) = BeCa t  
 t → +∞    u(x, t)      
    C < 0   C = −λ2   
   !"#   $
T (t) = Be−λ a t .
 !!#
2
% &     C = −λ       !"#
X  (x) + λ2 X(x) = 0     $
X(x) = C1 cos λx + C2 sin λx,
 !'#
2
2
       s + λ = 0    
 (  s1,2 = ±λi
)    (     * +
    *  ,-
2

2 2

2 a2 t

u(t, x) = Be−λ

(C1 cos λx + C2 sin λx).

      (  * .* * +
  C1  C2  * ( *  -  *
!//           0  +
          -

u(t, x)|x=0 = 0.

1 2   ( *  " #  &   !/#  

X(0)T (t) = 0,

X(l)T (t) = 0.

)  2    ( *  ( ,- T (t) +
   (       
X(0) = X(l) = 0.
 !3#
4    X(x)  *  ( +
*  !3#    !3#   !'#$
X(0) = 0

X(l) = 0

C1 = 0

C1 cos λl + C2 sin λl = 0

⇒ sin λl = 0 ⇒ λl = kπ, k ∈ Z ⇒ λk =

C1 = 0

C2 sin λl = 0


kπx
⇒ Xk (x) = Ck sin
,
l
l

  Ck 5 *      &     (  
       k = 1, 2, 3, . . .
1( λk = kπ/l ( *      ,+
- sin(kπx/l) 5          

 

         

 


Tk (t)


  

     

   

   






   


2 2
; Tk (t) = Bk e−λk a t .
l
!" Xk (x)  Tk (t)  
λk =


 

  

  

uk (x, t)

&#'$

 

#$     %





%

 (
2 2

uk (x, t) = Bk Ck e−λk a t sin


b k = Bk C k 
u(x, t)

)  


kπx
kπx
2 2
= bk e−λk a t sin
,
l
l

   &#'$  

 *  +  ,





! %

  -$ .    ! ,

 (

u(x, t) =

+∞


uk (x, t) =

k=1

0
/
 *



 *

!1 . 

uk (x, t)

3

(k = 1, 2, . . . )

bk e−(kπ/l)

  

$  

!$  .

4! .$

  

/

&#'  !"

  



u(x, t)

 



*  %



  bk
 , ,
 

ϕ(x)

%

+∞


bk sin

-(

kπx
= ϕ(x).
l

 bk    !2"   1 %
(0, l)  5 ,   (

* 

bk =

,



kπx
.
l

.    , !

k=1

  

sin

  

u(x, 0) =

  !"

2 a2 t

k=1

    $  !,!

2 

$ 

 

+∞


,$   

2
l

l
ϕ(x) sin
0

  

   -   

*

kπx
dx.
l
 

 

6
 &#'

*  !" +

%


 /$  !2"   bk        6
,  ,
    !"
1     


 $   

   

u|x=0 = h0 ,

(

u|x=l = h1 ,

#7





    

     



u(x, t)  w(x, t)

u(x, t) = w(x, t) + γ1 x + γ0 ,
 
 
   γ0 γ1  

    
        
 w(x, t)    
 
   
   
!
    " 
  
  
   γ0 γ1  
     

u|x=0 = w|x=0 + γ0 ,

u|x=0 = h0 ;

w|x=0 = 0 ⇒ h0 = γ0 ;

u|x=l = w|x=l + γ1 l + γ0 , u|x=l = h1 ; w|x=l = 0 ⇒ h1 = γ1 l + γ0 .
#$ 
    γ1 γ0 
γ0 = h0 ;

γ1 =

h1 − h0
.
l

%  

h1 − h0
x + h0 .
&'( ))*
l
∂u
∂ 2u
∂w
∂ 2w
=
+ 
,
=
 
  w(x, t) 
2
∂t
∂t
∂x
∂x2
     "  
&'- ).* 
 
u(x, t) /   &'0 1* 
 u(x, t) "  
   
 w(x, t)
u(x, t) = w(x, t) +

h1 − h0
x − h0 ,
l
 &'( )2* 3      

w(x, t)|t=0 = ϕ(x) −
  



w|x=0 = 0;

w|x=l = 0.

&'( )-*



&'( )0*

#$     

  &'( )-*
    
  &'( )0*   $  w(x, t)
#$  u(x, t)
 

  &'( )2*
       &'( ))*
'( ) -  
    #    
 
        4 
  5           "
 &'0 6*
∂u(t, x)
∂u(t, x)
|x=0 =
|x=0 = 0.
∂x
∂x

 

         



           
 
      
       
      ! " #    $ % &
 '(    '    ( C    "  & (
%  () C = −λ2     
* '  $ " +
   ,-   
* '  $ "  

.     "/  0     )
X  (0)T (t) = 0,

X  (l)T (t) = 0.

         (  ! 1(2 3%$ T (t)
1     )
X  (0) = X  (l) = 0.

4$      X(x)     !1- * (  +
!   ! * $ X  (x)         ( +
& * (  !    !)
X  (x) = −λC1 sin λx + λC2 cos λx.

X  (0) = 0 ⇒ λC2 = 0 ⇒ C2 = 0.
X  (l) = 0 ⇒ λ(−C1 sin λl + C2 cos λl) = 0 ⇒ sin λl = 0 ⇒

kπx
⇒ Xk (x) = Ck cos
.
l
l
'  $    ( Ck  

⇒ λl = kπ, k ∈ Z ⇒ λk =

#( ! '    - 1 
+
   k = 0, 1, 2, 3, . . .     ! !     
k = 0     ( 3%!  ! !1 !  (
 cos 0 = 1 = 0 5   1-   (   λk = kπ/l
 ! Tk (t)   !1 !  3   ")
2 2

Tk (t) = Bk e−λk a t .

   !! 3% Xk  Tk (t)  3       +
 uk (x, t)  !      !1- * (  !
"/)
2 2

uk (x, t) = Bk Ck e−λk a t cos

kπx
kπx
2 2
= ak e−λk a t cos
,
l
l

* ak = Bk Ck  k = 1, 2, 3 . . .
a
a
, ' B0 C0 = 0 ⇒ u0 (x, t) = 0 
2

2

6





    

 uk (x, t)  
      
   ! "# $  %     "& '  %
  (
u(x, t) =

+∞


kπx
a0 
2 2
+
,
ak e−(kπ/l) a t cos
2
l
k=1
+∞

uk (x, t) =

k=0

) 

  a0/2     '     λ0 = 0 * 
+  ',   - ./
  
  
         
"0 1'    ' +  % %  
 "&(
a0 
kπx
+
= ϕ(x).
ak cos
2
l
k=1
+∞

2 '3  ak   -../ 3,
 ./ ϕ(x) 3!  (0, l)   4% +   
2
ak =
l

l
ϕ(x) cos
0

kπx
dx.
l

)0

5 %    ++    
%    "&  +3  / $  
 )   -../ ak +  + . )0
 )         
           
            ϕ(x) = u0 
0  x  l !   "      u(x, t)   
 
     (  3 +3  /
$   )   -../ +  + .
)0(
l
2u0
kπx
2u0 + k = 0
dx =
ak =
cos
0
+ k > 0 .
l
l
0

1 . )  +  u(x, t) = a0 /2 = u0
1! 3%     + +! +3 
/ , +   % +  
$
+  t > 0

 

         



           


         
           !  " #
        $       #  
  
∂u(t, x)
|x=0 = u(x, t)|x=0 = 0.
∂x
%  &      '(       "  #
 ) * +,  & #     -   #  . 
 /     0

X  (0) = 0,

 1

X(l) = 0.

2    &  X(t)  # ,
   
#  1  #
  "   3  # X  (x)  x = 0
   X  (0) = 0 ⇒ λC2 = 0 ⇒ C2 = 0  "   3 
 x = l    X(l) = 0 ⇒ C1 cos λl + C2 sin λl = 0 ⇒
π
⇒ C1 cos λl = 0 ⇒ cos λl = 0 ⇒ λl = + kπ  k ∈ Z ⇒
2
(2k + 1)π
(2k + 1)πx
⇒ Xk (x) = Ck cos
.
⇒ λk =
2l
2l
+#   ,(  (  Ck    
   k = 0, 1, 2, . . .  4  , +   
λk = (2k + 1)π/(2l)  & # Tk (t)   # #  5  
% ## 5  Xk (x)  Tk (t)  5         & 
  #  )3  # ,
   #  0

(2k + 1)πx
(2k + 1)πx
2 2
= ak e−λk a t cos
,
2l
2l
 ).
 ak = Bk Ck  k = 0, 1, 2, 3, . . . 
6 &  uk (x, t)  #  )3  # ,
 
 *     ,/    (  #  7 +  
(   #0
2 2

uk (x, t) = Bk Ck e−λk a t cos

u(x, t) =

+∞

k=0

uk (x, t) =

+∞

k=0

ak e−((2k+1)π/2l)

2 a2 t

cos

(2k + 1)πx
.
2l

 )

8  (& 
 + (#  $ 5 # # # #  & 
  #  )3  # ,    #  





      

 
ak  (k = 0, 1, 2, . . . )        
     
+∞


ak cos

k=0

 

(2k + 1)πx
= ϕ(x).
2l

!    "        #     
$ %& cos (2k +2l1)πx  " 
(0, l) '    #   
  
l
(2k + 1)πx
(2n + 1)πx
l/2  k = n
cos
dx =
cos
 k = n .  
0
2l
2l
0
(      $  )$$%   *
 +          cos (2k +2l1)πx   "
(0, l) ,      $  )$$% 
ak =

2
l

l
ϕ(x) cos
0

 

(2k + 1)πx
dx.
2l

-.          /0     
   "     //  ,    / "
)$$% 1   $   
        l   

                
                  
 t > 0             
u|t=0 = l − x

-  .    2 . 1 #        
   "    
∂u
= u|x=l = 0.
 0
∂x x=0
      u|t=0 = l − x
-.   ,    / " )$$% ak 1 
 $   
ak =

2
l

l
0

(l − x) cos (2k+1)πx
dx =
2l

4
(l
(2k+1)π

l

− x) sin (2k+1)πx
+
2l
0

 
4
+ (2k+1)π


=

l
0

8l
(2k+1)2 π 2
8l
(2k+1)2 π 2

         
sin (2k+1)πx
dx =
2l
cos (2k+1)πx
2l

l
0

      

u(x, t) =

8l
π2

k=0

l

− x) sin (2k+1)πx

2l
0


8l
cos (2k+1)π
= − (2k+1)
−1 =
2 π2
2
4
(l
(2k+1)π

.

+∞


  

1
(2k + 1)πx
2
2 2
2
.
e−a (2k+1) π t/4l cos
(2k + 1)2
2l

(U) m





1

(U) m 0,8
(U) m 0,6
(U) m 0,4
(U) m 0,2
(U) m

0

0,2

0,4

xm

    

0,6

0,8

1

  

       
 !   "   #   #!
 $%    !    & '& #  $
&  t → +∞ !     #  ( )(  "*
         #    !  
#+ , ( # !    +'  
" )& #    #    *
 # !    ) & ) -)# -#) %
  &  Ox . 
  )
u(x)  (    t!    -#






      

 
    
            
     ! "   t
       "  xm, m = 0, 1, · · · M 
   x !  #   $ %
%   "%   &   # #
 "#   "#      # 
#% ' !  "    #   "  
()*+,)-       ()./0) 1 
 #!  2      "% "
# 2 ak
3
 
        
       #!  " 
   !#   #   

  " # 
 " 
35 u|x=0 = u|x=l = 0.
u(x, t) =

 bk =
5

∂u
∂x

65

∂u
∂x

+∞


bk e−(kπ/l)

2 a2 t

k=1
l

2
l

∂u
∂ 2u
= a2 2
∂t
∂x
u|t=0 = ϕ(x) 

ϕ(x) sin
0

sin

4  

kπx

l

kπx
dx k = 1, 2, . . .
l

∂u
= 0.
∂x x=l
x=0
+∞
a0 
kπx
2 2
u(x, t) =
+
ak e−(kπ/l) a t cos

2
l
k=1
l
2
kπx
dx k = 0, 1, 2, . . .
 ak =
ϕ(x) cos
l
l
=

0

= ux=l = 0.
x=0
+∞


u(x, t) =

k=0

ak e−λk a t cos λk x
2 2

 

         
2
l

 ak =

l
ϕ(x) cos λk xdx λk =
0



(2k + 1)π
.
2l

 
        
   


         
           
            
!   "   #$  f (x)   
  %


1 +∞
|f (x)|dx & 
l −∞
(  #$  f (x) 

&     

'    f (x) 
  )    
  




 

    & &

+∞
f (x) =
(A(α) cos αx + B(α) sin αx)dα,

'*+ ,*(

0

  & "

  -

f (x − 0) + f (x + 0)
=
2
.)## $ 

A(α)

+∞
(A(α) cos αx + B(α) sin αx)dα.
−∞

B(α)    # -


1 +∞
f (τ ) cos ατ dτ ;
π −∞

1 +∞
B(α) =
f (τ ) sin ατ dτ.
π −∞
A(α) =

0 

 

 

  &  "   


π 2π
,...,
,...
     - ,
l l
l


'*+ ,/(

0        "  
    $   " -

   

α ∈ [0, +∞) .
1
 

   )   $
*,  )## $ 
f (x)
  "     2 #$



 



        

A(α)  B(α) 
A(α) =

2
π

     

+∞
f (τ ) cos ατ dτ,

B(α) = 0,



0

       ! 
f (x) =

  

+∞
A(α) cos αxdx.

"#

0

$ % %& '   f (x)    (  
  
A(α) = 0,

b(α) =

2
π

+∞
f (τ ) sin ατ dτ,
0

+∞
f (x) =

")

B(α) sin αxdx.

"

0

*  %     !  +      ,   
 
-        + .  /
 %
+∞
f (x) =
0

0 

1
π

+∞
f (τ )(cos ατ cos αx + sin ατ sin αx)dτ dα.
−∞

+  %& 

  % '  

cos α(τ − x) = cos ατ cos αx + sin ατ sin αx

+      
f (x) =

1
π

+∞ +∞

f (τ ) cos α(τ − x)dx.
0

""

−∞

1+  2  %            
!  %      3  2 2+  '  /
   !   l → +∞

 

         



  
   
        !
" #   $  % & "'
(  $ )  *  ( +& !
   "
,  #(  -(&   ( # 
   .+  /
u(x, t) = X(x)T (t)
0   (  -(   !
  #  $  % & "' 1!
 λ&   "' /
2 a2 t

uλ (x, t) = (A(λ) cos λx + B(λ) sin λx)e−λ

.

0 #  -(      !
 $   (&     !
 +  &    λ  &  !
"' " (( λk    & 
#& "' ( & (   !

2 + +   +   !
 λ  ( "  (  #&
"' (  $ ) &  ( 
 "'    λ&    !
 -(/
+∞
2 2
u(x, t) =
(A(λ) cos λx + B(λ) sin λx)e−λ a t dλ.

$3 3

0

 (&  4 .   # !
 $  %  -. A(λ)  B(λ)   &   #
$3  " $ )  0   $3 3
 t = 0& /
u|t=0

+∞
= ϕ(x) ⇒
(A(λ) cos λx + B(λ) sin λx)dλ = ϕ(x).
0

5 (  . ϕ(x)   -(&  !
   $3 6   4. A(λ)  B(λ)





      




1 +∞
ϕ(τ ) cos λτ dτ ;
π −∞

1 +∞
B(λ) =
ϕ(τ ) sin λτ dτ.
π −∞

A(λ) =





         
      !  "
!# $  %
u(x, t) =

1
π

+∞ +∞
2 2

ϕ(τ ) cos λ(τ − x)e−λ a t dτ.
0



&

−∞

'     ( # 
    )# (#! *+* %

+∞
1 π −(τ −x)2/(4a2 t)
2 2
e
cos λ(τ − x)e−λ a t dλ =
.
2a t





0



   & (   !# 
 %
1
u(x, t) =
π

⎛ +∞

+∞

2
2
ϕ(τ ) ⎝ cos λ(τ − x)e−λ a t dλ⎠ dτ =

−∞

0

1
= √
2a πt

+∞
2
2
ϕ(τ )e−(τ −x) /(4a t) dτ.
−∞

$   #   
,( )#     - .  
)(   # !   & 
!    %
u(x, t) =

1

2a πt

+∞
2
2
ϕ(τ )e−(τ −x) /(4a t) dτ.
−∞



/

 

         



            
           

⎨ 0,
u0 ,
u(x, t)|t=0 =

0,

x < x1 ,
x1  x  x2 ,
x > x2 .

            t > 0

 



        

u0
u(x, t) = √
2a πt

x2

e−(τ −x)

2 /(4a2 t)

dτ.

x1


   !"  # #! $ % &
' $ (  )(z)

1
)(z) = √


x

e−S

2 /2

dS.

0

* % '
(  $  + ' #
, % &
' -  - !  .  . /$.  $ 
!  % '  !   % ' (  0  % '  (  !   )(−z) = −)(z)- &
 !# $1  !   !   2 - )(−∞) = −0,5,
τ −x

= S -  
)(+∞) = 0,5. 3 # .
a 2t

dτ = a 2tdS 
 

u0
u(x, t) = √
2a πt

u0 ⎜
=√ ⎜
2π ⎝

x2 −x

a 2t



e−S

0

e−S


a 2t dS =

x1 −x

a 2t

x2 −x

a 2t



2 /2

2 /2

0
dS +
x1 −x

a 2t


e−S

2 /2


dS ⎟
⎠=





      


⎜ 1
= u0 ⎜
⎝ √2π

x2 −x

a 2t



e−S

2 /2

0

 
u(x, t) = u0

1
dS − √


x2 − x

a 2t



e−S

2 /2


dS ⎟
⎠⇒

0







x1 −x

a 2t



x1 − x

a 2t


.



      xa2√−2tx xa1√−2tx  x < x1  x > x2
       x1 < x < x2      
 ! (z) !"! #!  $ % (+∞) = 0,5
    t = 0
! # &   "   x < x1 x > x2 '( #!  "&
  x1 < x < x2  u0   "& #" ! " ! #!
)#"      &     ! a x1 x2 *
  a = 1 x1 = 1 x2 = 3   "     +


u(x, t) = u0

3−x

2t







1−x

2t

&

.

, "    # " !#& '    "
      "&   "!(  - &   *
"# "! "' #  # .!  #  " 
   u(x, t)    ! /01 "& #" !
2 ". " ! &    #"   x = 0 , # *
#  #"   x = 0  .  #! " !    *
  #"
 + u(0, t) = 0 3"!  -  ! 4 % # -%
 #"& #!  "  "  "! ' # % '*
"#  3"! 4  ".   (x) ( "&
       "& "#& x < 0  $  '  5 *
-  " %  % #!   " 6  ! #"
 #".7  ' % # $   $ # (x)   +
u(x, t) =

1

2a πt



(τ − x)2
(τ + x)2
+∞

⎜ − 4a2 t
4a2 t ⎟
f (τ ) ⎝e
−e
⎠ dτ.

8

0

5 -  # -%  "! "' #  # .! *
 " %  " "      #" !   +
∂u
= 0 " #!   " 6 #" "& #"
∂x
x=0

             


   
u(x, t) =

(x)



       
      !   "

1

2a πt



(τ − x)2
(τ + x)2
+∞

⎜ − 4a2 t
4a2 t ⎟
f (τ ) ⎝e
+e
⎠ dτ.

#$%%&'

0

        
         
( )

    )     $*



  

+!      
  )"
 $%&
u

=u
x=0

 $%*
∂u
∂x

x=0

∂u
∂x

x=0

= 0,

u

x=L

,u

= 0,

u

∂u
∂x

= 0,

=
t=0

100
(L − x),
L

u

x=L

 $%%  
  
⎧ x ∈ (−∞, +∞)
u

=
t=0

 $%-

 , 

x − L/2, x ∈ (0, L/2),
0,
x∈
/ (0, L/2).

=
t=0

x=L

=

    

x ∈ [0, L].

100, x ∈ (0, L/2],
20, x ∈ (L/2, L].

=
t=0

      

  

⎨ 100(1 − x/10), x ∈ [0, 10],
100(1 + x/10), x ∈ [−10, 0),

0,
|x| > 10.



 



        
     
             

x ∈ (0, +∞)

  u x=0 = 0,
 

∂u
∂x

= 0,
x=0

u

U0 , x ∈ [2, 10],
0, x ∈ (0, 2) ∪ (10, +∞).

=
t=0

u

=
t=0

U0 , 0 < x < L,
0, x  L.





    

       
 
  
            
               
       
  

  

    

               
         ! " #   
   $%          &  $ 
'  $      #       $ 
  (  )       (( & 
        
     
  x * )      )       
       )       )      
        +%+ +     

    
∂u
∂ 2u
− a2 2 = 0.
∂t
∂x

, -./

0    
        &  $
  0  x  l) 0  t  T    &   
u(x, 0) = ϕ0 (x),

, -1/

        $  $% 2



⎨ α0 u

∂u
= γ1 (t);
∂x x=0
x=0
∂u


+ β1
= γ2 (t).
⎩ β0 u
x=l
∂x x=l
+ α1

, -3/

"               
     (n, m) 4  #   $    &   5
   & +   +   + 6  
&   5   , ! /    #    +

         







2

n

=

unm+1 − 2unm + unm−1
+ O(h2 ).
h2

  

    

∂ u
∂x2

m

(n+1,m)

(n+1,m-1)

h

τ
h

τ

h
(n,m)

(n,m+1)

(n,m)







   

 

  

    


   

     n !     "

⎧ n+1
un − 2unm + unm−1
um − unm


− a2 m+1
= 0,



τ
h2


m
=
1,
2,
.
.
.
,
M

1,
n = 0, 1, . . . , N − 1,


⎨ 0
m = 0, 1, 2, . . . , M,
um = ϕ0 (xm),
n+1
n+1
u

u

1
0
n+1


αu
= γ1 (tn+1 ), n = 0, 1, . . . , N − 1,
+ α1

⎪ 0 0
h n+1

n+1


uM − uM−1

⎩ β0 un+1
= γ2 (tn+1 ), n = 1, 2, . . . , N − 1.
M + β1
h

#



(n+1,m+1)

(n+1,m)

h

(n,m-1)





 

$%

& 

∂ 2u
∂x2

n
m





(N + 1) · (M + 1) %  !$ & % ' 
 r = τ a2 /h2   ( )     * 
⎧ 0
um = ϕ0 (xm ),
m = 0, 1, . . . , M,
(a)


⎪ n+1
n
n
n

=
(1

2r)u
+
r(u
+
u
),
(b)
u

m
m
m−1
m+1



m = 1, . . . , M − 1,
n = 1, 2, . . . , N − 1,

γ1 (tn+1 )
−α1 /h n+1
u1 +
, n = 0, 1, ..., N − 1, (c)
un+1
=

0


α0 − α1 /h
α0 − α1 /h


n+1

β1 /h
γ2 (t )


un+1 +
, n = 0, 1, ..., N − 1. (d)
⎩ un+1
M =
β0 + β1 /h M−1 β0 + β1 /h

+





    

 
         
  
 n = 0    !"   
     #
    t = 0
$    !"          %
u        (m = 1, 2, . . . , M − 1) n + 1#
     t = (n + 1)τ 
&     '      !"  
 !"  % (  t = (n + 1)τ 
) n = n + 1
  * n < N "       $
!  +  + ,
 $     -         #
(n + 1, m) '    n + 1#  "  ) "
n+1
n
un+1 − 2un+1
un+1
m + um−1
m − um
− a2 m+1
= 0,
2
τ
h

m = 1, 2, . . .
n = 1, 2, . . .

 

-+ '    '  .   / "   
   '
0 1      u   #(  (n+1)#  
('+    '    .2     
  1   3 
    (n + 1)#  #
 '  (   ,  '  "  .2
 . " (+    ,    "
  '    
.     ('  '
  %+ '    /     #
  
  '  (    "  ' 
'  (n + 1)#   +    '    
 % u     n 4    ' un+1
, un+1
, . . . , un+1
1
2
M−1
     .2.     '   
n+1
n+1
am · un+1
m−1 + bm · um + cm · um+1 = fm ,

m = 1, 2, . . . , M − 1,

 5

am = cm = −r" bm = 1 + 2r" fm = unm 
6(           % u 
(n+1)#  
   0   (   ym = un+1

m    



         
  

 






⎨ am ym−1 + bm ym + cm ym+1 = fm ,
y0 = L0 y1 + K0 ;

 M yM−1 + K
M ,
yM = L



−α1 /h
;
α0 − α1 /h
β1 /h
;
=
β0 + β1 /h







m = 1, 2, . . . , M − 1;


γ1 (tn+1 )
;
α0 − α1 /h
γ2 (tn+1 )
.
=
β0 + β1 /h

L0 =

K0 =



M
L

M
K



   
   ! "" #""  ""$
  % # &' #    " () '& " "  $
* ++ ,'! *   
""" #"&   #"('
-
."  '" +"' '& y0    !   "
$
 * ") *


ym = Lm ym+1 + Km ,
."  
#"')

/"

m = 1, 2, . . . , M − 1.

%  # m = m − 1

ym =

−cm
fm − am Km−1
ym+1 +
,
am Lm−1 + bm
am Lm−1 + bm

 

0

m = 1, 2, . . . , M − 1.

am (Lm−1 ym + Km−1 ) + bm ym + cm ym+1 = fm ,
'



-

m = 1, 2, . . . , M − 1.

1'" '! "

Lm =

−cm
fm − am Km−1
; Km =
, m = 1, 2, . . . , M − 1.
am Lm−1 + bm
am Lm−1 + bm

2
3"/++,  Km  Lm ( 4 & #"" ")  "/++, $
  ) '&4 & #"     +"' 2
 " #!  )   '" & # x = l  1"    $
  *   
  - # m = M − 1

yM = LM yM−1 + KM ;
yM−1 = LM−1 yM + KM−1 .
&  #"')

yM =

LM KM−1 + KM
.
1 − LM LM−1





  
 

     

 LM
yM =

M
K

     

β1 KM−1 + hγ2 (tn+1 )
.
β0 h + β1 − β1 LM−1



        ! " ! ym
   
     
 m = 0 #$      $ %&& '   L0 K0 
&  
( m = m + 1 #$      $ %&& '   Lm Km
 &  )
) * m < M      (
      
  &  $ !! yM 
 #$   ym  &  ( m = m − 1
+ * m > 0    
 #$
,     $    ! " !  $
- $  .      (n+1)/   
0         .     $ /
1 ! 
      |bm| > |am | + |cm | $ !/
!   
2   " !           ! 

 n = 0  & +3   "    /
    t = 0
(   !    " !    ! /
! " ! (n + 1/    
t = (n + 1)τ 
) n = n + 1
 * n < M     (
      - 
,       " !  !   1 
 !  !    '  %      
O(τ )+O(h2 ) ,
    !   ! !  /
    $  4  15  '  6 
m = 0, 1, . . . , M

         
    
    

     



 

n
δun − 2δunm + δunm−1
δun+1
m − δum
− a2 m+1
= 0.
τ
h2
n+1
n
δun+1 − 2δun+1
δun+1
m + δum−1
m − δum
− a2 m+1
= 0.
2
τ
h
   
 δunm = λn eiwh    

 




  λn eiwh
          !   "  
 #   
λ−1
eiwh − 2 + e−iwh
− a2
= 0.
τ
h2
$ " !  eiwh + e−iwh = 2 cos wh  1 − cos wh =
= 2 sin2 wh/2!    eiwh − 2 + e−iwh = 2(cos wh − 1) =
= −4 sin2 wh/2 !  % !  
λ=1−4

wh
τ a2
.
sin2
h2
2



&

# !   '( )     ) τ /h2    λ  1!
 *  % λ < −1!       +  
( "  % , %- "  "  "!    "
sin2 wh/2 = 1!  )   +  "  ! 
λ = 1 − 4ra2  −1,

'

1
.
2a2

.
/!   ) !  ("     (" ("    ! 
   )  t  x  * ("%  * *-   
r

τ /h2 

0 +   

1
.
2a2


λ eiwh − 2 + e−iwh
λ−1
2
−a
= 0.
τ
h2

  " !   ( " 

- "  

1
λ=
.
1 + 4ra2 sin2 wh/2

01
 " 
0









              

   |λ|  1   r       


           
     
  
      
  

               
             !
          "   # 
    !        
 $          % " &   "  
! !  '      "! ()*
+$    ! '  ,  !   "  ()*
  "! '    -./01.2   -.345.
6 !   78    -./01.2 '     
  9   !  '    :78;  
 "   u t=0 = f (x) )   0,

= ϕ(x),
t=0

ut (x, t)

= ψ(x).
t=0

1          & 
     2
      2
u(x, t) = X(x)T (t).
,"
/  0 ) ,"    !"&   
T  (t)
T  (t)
=
= C.
2
a T (t)
X(x)

/        $     t& 
 %     x& 3 t  x 4  &  
   5      6   5   ) C 

            

 



   


X (x) − CX(x) = 0.

         ! "# 
T  (t) − Ca2 T (t) = 0;


u(0, t) = X(0)T (t) = 0,

u(l, t) = X(l)T (t) = 0.

$ #  %  &  u(x, t)'     !  '
   '  T (t) = 0' '   #
X(0) = 0, X(l) = 0.
 
(  " #    ) * X(x)      +
%     "   , - ))  * #- +
  .  &    /'  % - 
        0    
s2 − C = 0     

 C = λ2 > 0 ⇒ s1,2 = ±λ 1   . # ' "   '
,%  &       
X(x) = C1 eλx + C2 e−λx 
2" - 0  .     
C1 + C2 = 0,

C1 eλl + C2 e−λl = 0.

3        &  C1 = C2 = 0'  
   X(x) = 0 ⇒ u(x, t) = 0   0 x' t
4",.  .        
 C = 0 ⇒ s1,2 = 0 1   . # '  ' ,%
 &       
X(x) = C1 + C2 x.

2" - 0  .     
 

C2 = 0,

C1 + C2 l = 0,

  0 x' t
4",.  . !        
 C = −λ2 ⇒ s1,2 = ±λi 1    +! ' ,%
 &       
C1 = C2 = 0 ⇒ X(x) = 0 ⇒ u(x, t) = 0

X(x) = C1 cos λx + C2 sin λx.

2" - 0  .      C1 = 0' C2 sin λl = 0





     

           
          

C2 = 0

sin λl = 0 ⇒ λl = πk (k = ±1, ±2, . . . ) ⇒ λ =

     !"  #
 k    Xk (x)&
Xk (x) = Ck sin


.
l

 $   %
 '"

kπx
,
l

Ck (      
)    Ck    *  *     
k = 1, 2, . . . +   *  
 λk = kπ/l  %
       *    ,  #   
 *    -   λk = kπ/l   

 $ . sin(kπx/l) (      , 
 !"  /"
0        ,    $ . , %
    (0, l)
+   ,  T (t) 1* λk = kπ/l     $ %
.  Tk (t)     
  2" 





Tk (t) +

3    
s2 +



kπa
l

2

Tk (t) = 0.

 
kπa
l

2

&

=0

i
    s1,2 = ± kπa
l
4#      2"    &
Tk (t) = Ak cos

kπat
kπat
+ Bk sin
,
l
l

 5"

Ak Bk (      
) *   '"  5"  $  6"  %
        5 2"  #  
  5 /"&





kπx
kπat
kπat
· Ak cos
+ Bk sin
.
uk (x, t) = Ck sin
l
l
l

            





Ck Ak = ak Ck Bk = bk    uk (x, t)



kπx
kπat
kπat
+ bk sin
· sin
.
uk (x, t) = ak cos
l
l
l




  uk (x, t)    
  
 
           
!   "# "  "   $%    " "&
 '"( )  #   $* + ,' "&
"  " !  "   !  "
"   $% -    # ' "     " &
'   # " "# , .    '
 ' (
u(x, t) =

+∞ 


ak cos

k=1

kπat
kπat
+ bk sin
l
l



· sin

/

kπx
.
l

0  .1 u(x, t)    "  '"  
$2 #     "  -  .1!  3 &
"  " #  ak  bk   .1 / &
  " #  
u(x, 0) =

+∞


ak sin

k=1

kπx
= ϕ(x).
l

+ "' #'   !  " 
ut (x, t) =


+∞

kπa
k=1

l

ut (x, 0) =

−ak sin

kπat
kπat
+ bk cos
l
l

+∞

kπa
k=1

l

bk sin



sin

kπx
,
l

kπx
= ψ(x).
l

bk   ,..1 
4 "  ak  kπa
l
"-  .1! ϕ(x)  ψ(x) (  (0, l) " 5"# 
 *%* 
2 l
kπx
ϕ(x) sin
dx;
l 0
l
2 l
kπx
dx.
bk =
ψ(x) sin
kπa 0
l
ak =

6





     

   
      
   ! ak  bk   "  # $
%!      !& #   uk (x, t)   '
     &   (
uk (x, t) = Fk sin



kπx
sin
l




kπa
+ ϕk ,
t

)*

tg ϕk = ak /bk 
+ #! $      # !   " '
          ωk = kπa
 !   
l
     # !    ϕk , #    
      !"  
 x    Fk sin kπx
l
 %   
uk (x, t)   (k + 1) -   
(0, l)(
Fk =

a2k + b2k ,

sin

l 2l
(k − 1)l
kπx
= 0 ⇒ x = 0, , , . . . ,
, l.
l
k k
k

.   !"   ,  -#  - ! '
  !&   " # /   0
   #    #     wk   '
"1  !# #, !   # #    '
 ω1 /     , 2 !  !  #"1 
ωk (k  2)  !"      3#   !
#  !             &'
  #    #   #   2    
 -# #  2 !&   4!  Fk ! #!'
"   k      !     2 !&,   !
"  2 # ## /   #
 )         
    





u|t=0 =





∂ 2u
∂ 2u
= a2 2 .
2
∂t
∂x


4hx
3l
 x ∈ 0; ;
3l
4

4h(l − x)
3l
;l .
 x ∈
l
4

ut |t=0 = 0,

u|x=0 = u|x=l = 0.

            



  
     l 
   (u|x=0 = u|x=l = 0) 
        
 OAB   ! 
  "  
#
   (ut|t=0 = 0)
$  %   
U
A

h

0

3l
4

   

B
l

x

    

$%        !&&'" ( )**  
   *  !&&+"
⎛ 3l

4
l
4h(l − x)
kπx
kπx ⎟
32h
2 ⎜ 4hx
3kπ
sin
dx +
sin
dx⎠ =
.
ak = ⎝
sin
l
3l
l
l
l
3(kπ)2
4
0

3l
4

, (  #   
-    b k = 0  ψ(x) = 0.
$%     !&&'"  
kπx
32h  sin(3kπ/4)
kπat
sin
=
cos
3π 2 k=1
k2
l
l
+∞

u(x, t) =
32h
3π 2



1
πat 1
2πx
2πat
πx
√ sin
cos
− sin
cos
+
l
l
4
l
l
2

3πat
1
5πat
3πx
5πx
1
cos
+ √ sin
cos
+ ··· .
+ √ sin
l
l
l
l
9 2
25 2
=

.    

πx
πat
32h
√ sin
sin
l
l
3π 2 2
32h
 F1 = 2√  
3π 2

u1 (x, t) =

    
ω1 = πa/l / #   

 x = 2l  





     

4



2
 x = l/4  

2πat
8h
2πx
sin
 
sin
3π 2
l
l
2
  F2 = 8h/3π
 

u2 (x, t) = −








      

3πx
3πat
12h
√ sin
cos
l
l
27 2

u3 (x, t) =




     


 


  

   

    
 

 












 

 " 

# 

 

  









 

' 



  

   %      
& 





x = l/6



 



 



    $ 

 

'

!















 

 





  ( )*  +
'%   '   


 

  
  



     


 

  '

    





 (

' -)*. 



 -)*#. /'  

 



 ,


%  

  

  '

' 



 -)*. 

 0

 1

u(x, t) = X(x)T (t).
2 

3 + (

X(0) = X  (l) = 0
  ''  









 

' '



'

( 

  

2 '' 3 

 ' -)*#. 
+ (

- 

)#4

%   '   

   


 





'

   




-)*.
 

   

'  

.1

T  (t)
X  (t)
=
= −λ2 .
2
a T (t)
X(x)
/









2

 '

X (x) + λ X(x) = 0
$5

 





    

   1



T (t) + (λa)2 T (t) = 0.
' 



 1

X(x) = C1 cos λx + C2 sin λx,

-))44.

            



         s2 + λ2 = 0    
  s1,2 = ±λi
       

X(0) = C1 = 0,
     

 

X  (l) = C2 λ cos λl = 0.
    cos λl = 0  

(2k + 1)π
, k = 0, 1, 2, . . .
λk =
2l
    !      λk

 " #
Xk (x) = Ck sin((2k + 1)πx/(2l))
$       
    
 
(2k + 1)πx
  " # sin
    (0; l)
2l
l
(2n + 1)πx
(2k + 1)πx
l/2, k = n
sin
dx =
.
sin
0,
k = n
2l
2l
0

%& 

 

  '(())* 



(2k + 1)πat
(2k + 1)πat
+ Bk sin
,
2l
2l
 ! 
   uk (x, t) = Xk (x)Tk (t)

+&
     λk    


(2k + 1)πx
(2k + 1)πat
(2k + 1)πat
+ bk sin
sin
.
uk (x, t) = ak cos
2l
2l
2l
Tk (t) = Ak cos

,  ak = Ak Ck  bk = Bk Ck 
-    u(x, t)   +&   .
  &/     
  


+∞

(2k + 1)πx
(2k + 1)πat
(2k + 1)πat
+ bk sin
sin
u(x, t) =
ak cos
2l
2l
2l
k=0
'(()0*
    !""#  ak  bk 
     
  '(12*

ut |t=0

+∞


(2k + 1)πx
= ϕ(x),
2l
k=0
+∞
 (2k + 1)πa
(2k + 1)πx
bk sin
= ψ(x).
=
2l
2l
k=0

u|t=0 =

ak sin

'(()2*





      

   ak  (2k +2l1)πx bk
 
      ϕ(x)  ψ(x)    
  sin (2k +2l1)πx   !    !  
 "        !  #!"
"   "   ak  !    
 #$$%&' !    sin (2k +2l1)πx   
  (0; l)
   

 



 

  



bk 

2 l
(2k + 1)πx
dx;
ϕ(x) sin
l 0
2l
l
4
(2k + 1)πx
bk =
dx.
ψ(x) sin
(2k + 1)πa 0
2l

ak =

    !  


 $! 

 "

'(





  

ak



bk

# $!

 

# !

# %  & 

  )    

 

           ρ
  l     x = 0     P    
       t = 0       
         
 $

*
 "

"







-  -

ak



bk !

# %





  
# $ 

0   &

%  $! '

/     

l
x sin

  

  

#   

  '(

0

8P l(−1)k
(2k + 1)πx
dx = 2
,
2l
π ES(2k + 1)2

    &  

u(x, t) =

 

 , -  -

.




2P
ak =
lES
* "

+ 

)  

8l
π 2 ES

+∞

k=0

  (

u(x, t)|x=0 = 0!  
sin (2k+1)πl
= (−1)k
2l

bk = 0.

 $

k

(2k + 1)πx
(2k + 1)πat
(−1)
sin
.
cos
2
(2k + 1)
2l
2l
 1 

   (

x = 0  
x = l 2  




   !  
,!  

            
 

 





     

            
    l            
          ! " Θ(x, t)  
 #$%&   u(x, t) = Θ(x, t)& !'(    
  #)%  (     #*+%
,    "   Θ(x, t) = X(x)T (t) -  
! Θ(x, t)   u(x, t)    #$%    
 &        #**% . ( ( (
  #*+% / X(0) = 0
 (    "  /
Θtt |x=l = −b2 Θt |x=l , ( b2 = GJ0 /J1
    ! Θ(l, t) = X(l)T (t) -/
T  (t)X(l) = −b2 T (t)X  (l).

0  &   (   #**% 
T  (t) = −a2 λ2 T (t),

   (     /
T  (t)X(l) = −b2 T (t)X  (l) ⇒ −a2 λ2 T (t)X(l) =
= −b2 T (t)X  (l) ⇒ b2 X  (l) − a2 λ2 X(l) = 0.

1    & (       X(x) ! /
X(0) = 0, b2 X  (l) − a2 λ2 X(l) = 0.
#*2%
3     '  &  ' " (  
 #**%   /
X(x) = C1 cos λx + C2 sin λx.

.   #*2%    C1  C2/
X(0) = 0 ⇒ C1 = 0 ⇒ X(x) = C2 sin λx,
b2 X  (l) − a2 λ2 X(l) = 0 ⇒ λ(b2 cos λl − a2 λ sin λl)C2 = 0 ⇒
⇒ b2 X  (l) − a2 λ sin λl = 0 ⇒ ctg λl = λa2 /b2 .





  


     

       
a2
λ,
b2


     !" #  $  %& 
     ' ( λk )
'   ' $ * λk  (   
 *(   + $( ,    
 C2 ' $  $  ' $  λk 
ctg λl =

y=ctg(λ l)
2
y= a2 λ
b

λ2

   
 

λ1 0
λ1

π
l


l

λ

λ2

      

,'  * λk  "+
Xk (x) = Ck sin λk x.

-.   #   *. 
 λk   Tk (t) = Ak cos λk at + Bk sin λk at / 
  Θk (x, t) *.    λk  
Θk (x, t) = Xk (x)Tk (t) = (ak cos λk at + bk sin λk at) sin λk x,

#  ak = Ak Ck bk = Bk Ck 
0     *.  $    .   

Θ(x, t) =

+∞

k=1

(ak cos λk at + bk sin λk at) sin λk x



            
  
   

 ak

Θt |t=0 =
Θ|t=0 =

+∞




bk      

λk bk sin λk x = 0 ⇒ bk = 0,

k=1
+∞


ak sin λk x = α

k=1

x
l



k = 1, 2, 3, . . .

!"    # ak  $ "    
sin λk x  %  (0; l)    
 ak "
#   &'   ()   %   "  * 
"  cos λk x %   " 
l
cos λk x cos λn xdx =
0

+

k l)
+ sin(2λ
,k = n
4λk
.
0, k = n

l
2

      x
+∞


α
.
l

ak λk cos λk x =

k=1

,      
 ak    
%   -  cos λn x  %   (0; l) .  
%     # cos λk x  
l
ak λk
0

α
cos (λk x)dx =
l
2

   %  


ak =
λ2k l

0

l
cos λk xdx,
0

 

α sin λk l
.
sin(2λk l)
l
+
2
4λk

/

"     1  2  
Θ(x, t) =

+∞


ak cos λk t sin λk x,

34

k=1

% 
 ak '    / 
,  "  # λk   5 - # 
 *  *     "
  
  "     6'  









  



  

   

   
     
    
                 
                !
        "
 "   !
    #     $     !
       $   
     
      

         
       

%   &'     (  )  *&'+, 
!
           -   ) 
  -   x ∈ [0, +∞)      ( .
*&'/0,   1    *&'/&,     !
   %   &&     (  
   !
               1
  



 

2

= 0,
t=0

= x,
t=0

= ex , u
t=0

x=0

t=0

t > 0.
= x2 ,

u
t=0

u

= 0,
t=0

∂ 2u
∂ 2u
= a2 2 , u
= sin 2x,
2
∂t
∂x
t=0
= 0, x ∈ (0, +∞).

∂ 2u
∂ 2u
=
, u
= 0,
2
∂t
∂x2
t=0
∂u
= ch x,
= 0, x ∈ (0, +∞).
∂x x=0

 &&4
∂u
∂t

    

2

∂ 2u
∂ 2u
= 4 2,
2
∂t
∂x
x ∈ (−∞, +∞).

 &&3
∂u
∂t

2

∂ u
∂ u
=
,
∂t2
∂x2
x ∈ (−∞, +∞).

 &&+
∂u
∂t

 

  "$  

 &&/
∂u
∂t



  

 



        

 

   
  x ∈ [0, L] 





 



 

        
           

= 0.
  u t=0 = 0, ∂u
= 100x, u
= 0, u
∂t t=0
x=0
x=L
= 2x, u
= 0,
  u t=0 = 0, ∂u
x=0
∂t t=0

∂u
∂x

∂u
,
  u t=0 = sin πx
= 0,
2L ∂t t=0

u

∂u
∂x

= 0.
x=L

= 0,
x=0

= 0.
x=L

∂u
,
  u t=0 = sin πx
= 0, u
= 0,
L ∂t t=0
x=0
= 0.

u
x=L

      
    
 !       !

"        #  
$  ! $  $  %&' ( !
   
             " 
 ) $       & !
"             "  *  !
 +* ,,)  
 -   
 +*+   + ,,) +


 



        



               
        
⎧ n+1
un − 2unm + unm−1
um − 2unm + un−1
m


− a2 m+1
= 0,

2

τ
h2



n = 1, 2, . . . , N − 1; m = 1, 2, . . . , M − 1;




m = 0, 1, . . . M;
u0m = ϕ0 (mh),

⎨ 1
um − u0m
= ϕ1 (mh),
m = 0, 1, . . . , M;

τ


n+1
n+1

u

u

0

= γ1 (tn+1 ), n = 0, 1, . . . , N − 1,
+ α1 1
α0 un+1

0

h


n+1

un+1

M − uM−1

β0 un+1
= γ2 (tn+1 ), n = 0, 1, . . . , N − 1.
M + β1
h

 !
"              #   
# $%  &  
⎧ n+1
un − 2unm + unm−1
um − 2unm + un−1
m

2 m+1


a
= 0,


τ2
h2



n
=
1,
2,
.
.
.
,
N

1;
m
=
1,
2,
. . . , M − 1;




u0m = ϕ0 (mh),
m = 0, 1, . . . , M;

⎨ 1
um − u0m
τ a2 
= ϕ1 (mh) +
ϕ (mh), m = 0, 1, . . . , M;

τ
2 0


n+1
n+1

u1 − u0

n+1

= γ1 (tn+1 ), n = 0, 1, . . . , N − 1,
⎪ α0 u0 + α1

h n+1


n+1


⎩ β un+1 + β uM − uM−1 = γ (tn+1 ), n = 1, 2, . . . , N − 1.
0 M
1
2
h

'!
(            )    
             *+ ,-! .  
 ! &&           
  τ  h           /  τ 
           #   h
   τ  0  '!      !    
         . 1     ∂u(0, x)/∂t
      τ       
 #       h    τ     
    $  ∂u(0, x)/∂t    '!    





     

  
  
   

ϕ0 (x)

u1m = u0m +

   

 u1m   

1 ∂ 2 u(0, x) 2
∂u(0, x)
τ+
τ + O(τ 3 ).
∂t
2 ∂t2

   

      
2

2



2

∂ u
∂ u
d ϕ0 (x)
= a2 2 = a2
∂t2
∂x
dx2



∂u(0, x) u1m − u0m a2 d2 ϕ0 (x)
=

τ + O(τ 2 ),
∂t
τ
2 dx2

     

      !"#$

τ
u1m − u0m
= ϕ1 (mh) + a2 ϕ0 (mh) + O(τ 2 ).
τ
2

%
u1m = u0m + τ ϕ1 (mh) +

τ 2 2 
a ϕ0 (mh).
2

 
  
!"&$  '
( ) )    *
u0m

2
un+1
= 2unm −un−1
m
m +a

u1m

 

!"&$


 %

τ2 n
(u
−2unm +unm−1 ), n = 1, 2, . . . , N −1. !"+$
h2 m+1

,      -      
       )*
#$ .  u0m = ϕ0 (mh), m = 0, 1, 2, · · · M )  - 
      t = 0
/$ n = 1 .  u1m = u0m + τ ϕ0 (mh)   0  
 !"&$   -      
 t = τ
1$ .  !"+$          u
 )   )  ) (m = 1, 2, . . . , M − 1) n + 1 
    t = (n + 1)τ 
&$ . 
     !2+ 3$

!2+ 4$   0  t = (n + 1)τ 
+$ n = n + 1
2$ 5 n < N  )    1
!$ 6     '

 



        



 
          
 
              
      ! " δunm = λn eiwmh    !
"
n
n−1
δun − 2δunm + δunm−1
δun+1
m − 2δum + δum
− a2 m+1
= 0,
2
τ
h2
    #!  τ > rh     
 


wh
λ + 1 = 0.
λ2 − 2 1 − 2r2 a2 sin2
$ %&
2

 '   '  '   
(  !  ) λ1 λ2 = 1 *  +      
     )  ,+  ' # )  , *  
  - #     )  
 +  
     -          , .! $ %&
  /

wh
wh
2 2
2 wh
± 2ra sin
− 1.
λ = 1 − 2r a sin
r2 a2 sin2
$  &
2
2
2
0              #  +  
#    -  $  & #   ,   /
r2 a2 sin2 (wh/2) < 1+   r2 a2 sin2 (wh/2) = 1   |λ| = 1 1 
!        +
   sin2 (wh/2) = 1+   +
          r2 a2  1+ 

1
τ
 .
$ &
h
a
2   +   #   !   )  ' 
  # !   (tn+1 , xm )      
 x − at = C1  x + at = C2 +  "   *   $  
  3%& 4#   - !    !      
  )#   0'    56+  '+  # ! 
   #     + #  +  # #   !  
)  #  (tn+1 , xm ) !     
  # #   !   77, ' +  
τ
 a+             * 
   
h
 +  
 ! 2  4     
r=

               



             
    
n+1
n+1
n
n−1
σ(un+1
un+1
m+1 − 2um + um−1 )
m − 2um + um
2

a

τ2
h2 n−1
n−1
n
n
n
n−1
(1

2σ)(u

2u
+
u
)
+
σ(u

2u
m+1
m+1
m
m−1
m + um−1 )
−a2
= 0,
h2


!  σ = 1/2     " "#  # #

 $   σ = 1/4 %  " "#  # #

 $ & '  σ = 0       
 #  # (' )
*! " !       #
 τ = rh     +


1 + 4σr2 a2 sin2 (wh/2) λ2 − 2 1 − 2(1 − 2σ)r2 a2 sin2 (wh/2) λ+
+1 + 4σ 2 r2 a2 sin2 (wh/2) = 0.

,.!  σ = 1/2  σ = 1/4 " " |λ| = 1   
   / #" !    ! # " 
   "  "
 # 
$ !
      0 " "  #  " 1
 23, 1      !!    #     
      !

           
       
  



4  !5 6    7  8       "
'       ! "#   ! "# 1
 9  " "  !  " 1
        "    7!5 ψ(x) 1
/: # ! " !   "#     ; 
7!5   " #   "   
      "   '    1
            7!   # 
7! "   # !    1
!     :  CADEFAG      

  

    
       



 

"
%    $     (   $  
   $  
( =>?@A< BA?>: %  $  1
 $+  $   
% (      "
   $    (   $     
!" #
$ 1  ( +     $   (    - 
   $   0    0H


 1  #      0(        
 
I@J    K L M !
N>O 9! P? NQ@J, +/#2* &+, 7(7%&* 4)-D+52*2%7 / 
3>!
3+:
3=
3
3

3
3,:
3,:
3>=
3=,
3 =
3:

3:

3,,
3>,
3+
3 =
3+

3=
3,:
3,
3>
3==
3 !
3 !

;)* +,
3+
3>
3>
3+
3::
3=!
3=

3>
3:,
3:>
3:
3=+
3+>
3+,

3, 3
3
3>
3>: 3>!

1
t=0
t=0,2
t=0,4
t=0,6
t=0,8
t=1,0

0,8
0,6
0,4
0,2
0

0,2

0,4

    
 

0,6

0,8

1

   



          
  
.6(9 8 -9 +, 6.6(9 9(9(56?@
-?(4 ABCB$  ABDB E*4(9 8 0.5  94
 -9/@ (? F3 ??  .* 8 4*444 1 6
6-4*2049 *4(956?44 0/? GH%BI JBHK 4L(491  -4
99@  ABCB$  ABDB ?499( -4*46(2M 4(61(6(1M(









ORIGIN := 0

   

          

T OL := 0.00001

T max := 0.5
r := 1
M := 100
h
T max
τ := r ·
N :=
a
τ
hP r
τ P r := 0.1 hP r := 0.1 MP r :=
h

a2 := r2
a1 := 2 · 1 − r2

m := 0..MhP r

L := 1

a := 1

L
h :=
M

MhP r :=

L
hP r

xm := m · hP r

(U) m 1
(U) m 0,8
(U) m 0,6
(U) m 0,4
(U) m 0,2
(U) m

0

    

0,2

0,4

xm

0,6

0,8

1

     

 

                    
U := |f or

m ∈ 0..M
xm ← m · h
ynm1m ← sin(π · xm )
ym ← ynm1m + τ · 0.5 · cos(0.5 · π · xm )
k←0
ngr ← 1
f or m ∈ 0, MP r..M
Uk,0 ← ynm1m
k ←k+1
f or n ∈ 2..N
t←n·τ
f or m ∈ 1..M − 1
ynp1m ← a1 · ym + a2 · (ym−1 + ym+1 ) − ynm1m
ynp10 ← 0
ynp1M−1 + h · 0.1 · sin(2 · π · t)
ynp1M ←
1+h
ynm1 ← y
y ← ynp1
if ngr · τ P r − t < 0.1 · τ
k←0
f or m ∈ 0, MP r..M
Uk,ngr ← ym
k ←k+1
ngr ← ngr + 1
U

   


   

 

   U (x, t)

    



& 

 *+,-. /,+0

xm := m · hP r

  



  ! "#$  
  ( 

m := 0..MhP r

% 


&

  ' !

%)

   

   





  





 % 


) 






 


1

 

 )

  



&





% 

2+3

 
      
         

  









              

 

 












-




 

 

 
 
 


 










 
 
 
 
 

 
 
 

 

 

 
 

 



 




 


 
 


 


 
 
 
 
 
 

 
 

 
   
        
      
  !  " #$%&' (')*+,)!
.  /012 34 5.
6 7 !0

  

 

 6 78 ! 6 7
6 7 6 7 !!9.8 !! 6 7
6 7 6 7


: ! ";

;

       
 .  /012 34 5.

        
! 

 

           

.  /012 34" 5.
6 7 !6 7 ! 6 "76 7" 6 7


      
67

        

                    
  

Ȧ 
  º¶»

(

      

            

      !
   
 "# $ "%&  "%  
      !
'$ 

$$ 


 )"*
)"*
)"*
),"*
)-"*
)."*

+'(
+'(
+'(
+',(
+'-(
+'.(

/ +! !0)!0)
!0)!0),!0)-
!0). -
-,--.1
$%2"#3 $!3$! 3 3
3 3 3 -33 13 3 /3 3 3 (

 

       



         
 
       
 

 
   
  !   !  " #
    
            

$% &         !    '
 %#
  
( )  *        #
  !
! %  '         &   ' 
%       ! "   !  
+  

          
      

,-   (    ! %    !
 #
     !   %  !  ).  * /-   0
#
 !  1  2         % ! -
3    (  '     
! 
4  #
2  '     
 
    - 5#
  -  / 
   %    '
2 
 
        6  % 
   " -'  2     -     #
     ' ) ! %  %   ! !* 7 #
  
   
     
!  '
2  %   
 (   (  % 
!
- 8  -  /     " !  
  -   1

 

 9  : ; / "   -   
 0, y1 > 0 
y = y(t) - "   '       ' #
A B  +       
  (  *  ) 
  * #     ( )      "
= 2gy 
(   y = y(x)     *   ( # ds
dt
  0   t !0        *
#   )  A(0, 0)  )  B(x1, y1) :
1
t[y(x)] = √
2g

x1
0

1 + y2
dx −→ inf;

y

y(0) = 0,

y(x1 ) = y1 .

1
&%         2  
  #  !(   ) !(*    
, # . *    ) m / # *   x0  

,  !#  # f 
# *  * v0 +''
   '    ) # x(t) ,   
 3*' mẍ = f  4, #   ,    5
f ∈ [f1 , f2 ] 4 '  #  #   
   !0
 ,   , #!(   *  )  #  T 
T −→ inf,
x(0) = x0 ,

mẍ = f,
ẋ(0) = v0 ,

f ∈ [f1 , f2 ],
x(T ) = ẋ(T ) = 0.

6

 

       



           
              !"#$%
 &'        &'   t[y(x)]  
 '     ' ' '  ' (     
   !       X   "#)*% +   
          ( ',   &'  
' ' '   -'   
"#).            
/       &0   & 1  &0  
 2
ai 3 '    &'   (4   i, 
1  i  m5
bj 3    ! (   (% j 4  4  
1  j  n5
cij 3    '  &'  i, 
j ,  4 5
xij 3  & '    &'   '
 i,  j ,  4 
m n
64    '     cij xij    &  
i=1 j=1
  7    4   8 &02
!*% xnij ∈ R+ !  4   &  '%5
!)%  xij  ai !     4   %5
!9%

j=1
m


xij = bj

!&       ' ''  (

%
1 4 &   &0    2
i=1

m 
n

i=1 j=1

cij xij −→ inf,

n

j=1

xij  ai ,

m

i=1

xij = bj ,

xij ∈ R+ .

!"#"%
      &      :&   
n &' !&'  '&      % ;&   
 4    ( bj  j 4    : 8
aij     j 4  
  i4 &'  ci 3 
  i4 &' 







    

      

 

   xi    i     
n


ci xi −→ inf,

i=1

n


aij xi  bj ,

xi  0.



i=1

        
     
  
       
        

              ! 
    "      #  $% #
$&  $  #$    '(
y
D

C
F

G

E

H

A

      

B

x

  

"    #)
• a *   #$+
• b *   #$+
• av *    +
• bv *    +
• O(xv0 , yv0 ) *    ,    
-        EF GH .   $#
 $
  
#$ ABCD /#  #    
   0 $  #$ ABCD  M  
   hx     AB  N     
 hy     AD -  1  hx = Ma  hy = Nb    
M1 M2 N 1 N 2     .0   0  0 . 0

              
 
  



   



      

        av = 0 bv = 0
N 1 = N 2 = M1 = M2 = 0
  !
     " # 
av > 0 bv > 0 0 < N 1 < N 2 < N  M1 < M2 < M 
$ !
    %& '  " # 
("   C  av > 0 bv > 0 )  

  *
"  DC BC  % "
0 < N 1 < N  N 2 = N  0 < M1 < M  M2 = M 
+ !
     %&  " # 
("    AD av > 0 bv > 0 )  
"  AD   "#% 
    
M1 = 0 (  CD ,
N2 = N
- '  "     &   
&#
  #% "     
 -  & '# & '     & 
"  . # &  #% "    /
 
" #% &# ABCD  " #
 
EHGF    01   &  2 |AB| = a |AD| = b |EF | = av 
|EH| = bv  O(xv0 , yv0 ) 3  

 
- '  
      &# "
#  ABCD  N      "  AD 
M      "  AB    &  
N 1 N 2 M1 M2        %4   
 
     &  # "  a b av  bv 3  
 AB  AD EF  EH  5 .  
   xv0  yv0 
 
  av = bv = xv0 = yv0 = 0
/ & "#   6
  #% " 
  "
" " 4 " "     
6 #     789:5;  nn

 "  M , mm ?
  "   2
hx, hy, r       "  Ox , xm     
  "  Oy , ym  m1, m2, n1, n2









   



      

 

 

 
  
        
              
          !  "!   
          !"!    # 
       $   !   −1000
%  &  $
     ! ! 

$!      
'  ! 
$! !   
      
     

       
   
 
  

  

      (  

               

   #  !"     !#
!
     #  !"   

 
     
        !  

         #   
   !   )
  ! " #  "$

     
 Itmax

itn

 )

 

    # % 
&$'( )*+,-./012234 5-1/,66 2, 617896: ;. ) <  < =
) 0+,-./04) < ) " # ) < " # 
"  >?
" 

    )   *) 
  !!     + ,-./012 3   
  ,-./014 3      5  
   ! !    6 u    
5       !!      !  
   # 
      !  N IZOL









   



      

 

 

   
  
!" # $ %& ' &   ( 
! # !! ' !"
" # $ % '    ( 
 #  ' "
)*
 +, 
" #  ' &  
 # 
&  
" #  '   
 # 
  
!" # $ %"  
! # !" $ % ' "  
" # $ % "  
 # " $ %  ' "  
)- 
  '  # "   # 
 !! ' ! # "  ! # !!
)- 
$&** ./0,123413+5126278193:; ; !!; ";<
; !"; !
=6/ />3 />2262 ?2>,,/
@% # A BB #  ( B 
CD
@% # @% "
)!& #
EDB  # " D  ' "
EDB ! # " D !! ' "
 FD% :!; 
'GH IB  J# " -  #  - <
! J# !" - ! # !

KL # D!M&  BB ( B ( :!;  "
:!;  ' "
<
:! "; 
:! ' "; 
" ' D!M& ( :!; 
)N # KL ' :!; 
 )N J )!&  )!& # )N
:!;  # KL
)- 
F% !; 
 72O,/2P/ 6/Q 5,12 / P5R />







    

      

 

 

        ! "#
$%&'" (& )!"! "' *"*"+(,"
-. / /0  100.2 34 5 34 65 3475 346 8
3469: 349; 34 345:; 34?=; 8
34 0    |y| − |x| =
  |y| − i |x| =
= C1 , |y| + |x| = C2   xy < 0 
|y| + i |x| = C2   xy
=
0


 
= C1 ,




xy < 0    y = 13 x3 + C1 , y = − 13 x3 + C2  


xy > 0 
  √y = i 13 x3 +C1, √y = −i 13 x3 +C2  























∂ 2z
∂ 2z
x2
+ 1, z(x) = xº 

=0.
2
∂x2 ∂y 2
2
2
2
∂ u ∂ u ∂ u
 2 + 2 + 2 = f (x, y, z).
∂x
∂y
∂z
ϕ − y 

= 1  
    
1 + y  ϕ
y1 = ϕ(x1 )            

 y(x) = −

 y =

1
x5
+ (x2 − x3 )
120 24




π

4


   
     
      
     !  " 
#    $      

#$ "$    
#$ "$    
#$   
#$  $ $ %
#" &'$"$ $   
(   )
(  *$     
(  *"$ +  $"$,   )
(  *"$   ) %
-         
- $$   ' *  %
- $$ "$  $
   '  
- $$ "$  $
".   '  
- $$ "$  $
$   '  
- $"$   )
/  '   
0 ' * -  $ % 
0 ' * -  $ '   %
0 ' * 1.   )   
) 2 %
0 ' * 3$!   %
0 ' * $   " %
0  (  
4    


4$   5   
4$   5   
4$   6 $ 
4$   ' $$  
 $  
4$    $  2
4$        
4$      $" 
4$   7 ! & $ )
1  *$   $ ! 2)
1   $!$  $ $ ) 
1$  "! $$ 
1$   ' *  
18  $" 6 $ 
1 $  ' *  ) 
1 $"$   )
1  "$ $     
9$ $*   
9$"! $ "!   2
9 $!        ! 
9 $!       ! 
9 $!    "$ $.$  
9 $! $   "$ $.$  
9 $!$ ' $$ $
 $ $ ".$   '  
9 $!$ $''$  $ $
%
9 $!$ ''$  $ $ %
9 $!$  $ $ )
9 $!"$ ' $$ "$
 $ n:   ' 
 " 8  $  






    
       
    
       
  
     
     
   
    
  !  "
 #  
 $ !  %&
 '()  &*
 #  &" " 
 +   &*
     , 
 
     , - *
   - ! 
&%&
  ./ ,- &
 /- , ""
   0  &
  
    "*
 ! /  1
&
   " 
  ""
 /     
2 /     &&% " 
2,  "%
2    

2    &"&
2  -  "* "
2    
    
3!  
3!      %&
3!4 1 &&% "
3!4 1    
  &



 

3!4   "*%
3!4    &&% "
3!4 
     
&
3!  /  &
3!    
  &"
3      &
3     
3    &"&
3     
  "%
3   5   &""
3     
/  %"
3  
3!        "
3!   "
3!  /  "
3! 1 "
6    "
6   ,  / $ -  %
6   /  !  &
6      &
6 !/     % %
6     "%
6     
  &"
6  - "%
6    "
6   /  ,  "%
6     "*
6  -  ! -  7

6 ,    
6      %&
' ,  ,  /  "
' ,  -  "
',  &
'1 $ !  %&
'1    
  &





 
      

   
   
    !   " 
! 
# !  
     
  
 
 $ # % &
 $ # ' %(
  # %
  # !  %
  $# %
   !  
   !  % 
   # % 
   !  
  #  !  
      &
#   %
 !   )* 
      
      
 * +  ! (
   %
,  -   %%
,  .  
,  '   /% 
,  0* " %%(
,      $# %%(
,  ) 
  $ # '
%
,  ) 
   
1$  #! 
1      !  %&
1  2  
1  0+ & %&
1  0+  +  
!  %&/
1  3  %


1   + 
    %%
1   "   ! 
%&
1  *+ #!* +
(/
1  +  #!* +
(/ ((
1  +  &
1      ! 
   &%
1  ++   &%
&/
1  45 * + &
1  4+#!* +
(/ &
1   $ 5)
+    
1   ! ! % (
1  45 * + %
1 .  
1 '     0

1 6 /& /
1# /
$ %
  .   
  ,  %&
 
+  %%/
   
/( 
!  %
7 ! !   (
7 ! #!  %
7 ! #!   %
8  !# $ 
9  
9 
   *  
%
:  /
:* ! 
;  %





 



  



   
         
     
  ! " #  $ % &  !' ( ) *
     +
, - $ .// - ((0 /  & 
  12
2 3  4    567896:   
"$% ;;+ < , =
> 3  4    56?@A6   
"$% ;; < 1 =
+ 3  4B    C@DE6F G6D@= %!. *
.    "$%  < , 
  3 $ / 3
0 H4I
H J I  K /I'   - - 3
0
L MMM  "$% ;;
1 " N 
    K '   O*
/ )-!   "% 1
 "- K % &  !' ( )    "&
-0 & ( ) * !'  / )-* PQ  
; "- K R&. '  R)/ / -  
 S    
 T 4H 4 " KU  V /I&  
 U & )-! L MM   /I& I 1+ < 2 > 
 T& 4 . $  5678=6: 1 WXY   *
 ( )  MZ7[\Z[7    -U  < > 
, K    L / -/    1
2 K   -&  !  /I  !./ )- '
%!. .  L M 4- - 3 0 H4I& 
 "$% ; 
> K   -&  !  /I  !./ )- '
%!. .  L MM 4- - 3 0 H4I&
  "$% ; 
+ 4 ' $ " #0   .// - ((*
0 /  '    ;
 4  $     567=6:  ! '  
-& O 
U %!. .     /
    < +>+ 

  



         
    !"
! # $% &     '( )*
   +,' -../
-. # $% &     0(1 ) 
21 '(2 (* )*   +,' -../
-      1 0 3 ) 45* 22  
1 (* 1 *# 1 (1 0 36   78  *
$% #  9* :  +,' -. 
--     1 0 3 ) 45* 22  
1 (* 1 *# 1 (1 0 36   78  *
$% #  9* ::  +,' -. 
-;   * ) 45* 22   1 (* 1 *
# 1 (1 0 36   78  * $% # 
9* ::  +,' -. 
-" ) 7 7 5*   1  3   +
** 0* 1  (*3   !